
> Infrastructures and Practices for
Reproducible Research in Geography,
Geosciences, and GIScience
Daniel Nüst

2021

Geoinformatik

Infrastructures and Practices for
Reproducible ResearcH in GeograpHy,

Geosciences, and GIScience

Inaugural-Dissertation zur Erlangung des Doktorgrades der
Naturwissenschaften im Fachbereich Geowissenschaften der

Mathematisch-Naturwissenschaftlichen Fakultät der
Westfälischen Wilhelms-Universität Münster

vorgelegt von

Daniel Nüst
aus Gütersloh

2021

 https://orcid.org/0000-0002-0024-5046

https://orcid.org/0000-0002-0024-5046

Dekan: Prof. Dr. Dr. h.c. Norbert Hölzel

Erstgutachter: Prof. Dr. Edzer Pebesma

Zweitgutachter/-in: Prof. Dr. Ben Marwick

Tag der mündlichen Prüfung:

Tag der Promotion:

https://www.uni-muenster.de/Geoinformatics/
https://www.uni-muenster.de/

Citation for this document:
Nüst, Daniel. 2021. Infrastructures and Practices for Reproducible Research in
Geography, Geosciences, and GIScience. Doctoral dissertation, University of

Münster, Germany. https://doi.org/10.5281/zenodo.4768096

https://doi.org/10.5281/zenodo.4768096

Acknowledgement
…

Abstract
Reproducibility of computational research poses enormous challenges to all branches of science.
In this dissertation, technologies and practices are developed to increase reproducibility and to
connect it better with the process of scholarly communication with a particular focus on ge-
ography, geosciences, and GIScience. Based on containerisation, this body of work creates a
platform that connects existing academic infrastructures with a newly established executable
research compendium (ERC). The ERC is shown to improve transparency, understandability, re-
producibility, and reusability of research outcomes, e.g., for peer review, by capturing all parts of
a computational workflow. The core part of the ERC platform is software that can automatically
capture the computing environment, requiring authors only to create computational notebooks,
which are virtual documents that combine text and analysis code. The work further investi-
gates how containerisation is and can be applied independent of ERCs, including with a complex
remote sensing workflow, for data science in general, and in use cases within the R language
community. Based on these technical foundations, the work concludes that functioning prac-
tical solutions exists for making reproducibility possible through infrastructure and making it
easy through user experience. Several downstream applications built on top of ERCs provide
novel ways to discover and inspect the next generation of publications.

To understand why reproducible research has not been widely adopted and to contribute to
the propagation of reproducible research practices, the dissertation continues to investigate the
state of reproducibility in GIScience and develops and demonstrates workflows that can better
integrate the execution of computational analyses into peer review procedures.

We make recommendations for how to (re)introduce reproducible research into peer reviewing
and how to make practices to achieve the highest possible reproducibility normative, rewarding,
and, ultimately, required in science. These recommendations are rest upon over 100 GIScience
papers which were assessed as irreproducible, the experiences from over 30 successful reproduc-
tions of workflows across diverse scientific fields, and the lessons learned from implementing
the ERC.

Besides continuing the development of the contributed concepts and infrastructure, the disserta-
tion points out broader topics of future work, such as surveying practices for code execution dur-
ing peer review ofmanuscripts, or reproduction and replication studies of the fundamental works
in the considered scientific disciplines. The technical and social barriers to higher reproducibil-
ity are strongly intertwined with other transformations in academia, and, therefore, improving
reproducibility meets similar challenges around culture change and sustainability. However, re-
producible research is achievable already today. The transferability of cross-disciplinary lessons
facilitates the establishment of reproducible research practices and, more than other transfor-
mations, the one toward greater reproducibility can draw from from accessible and convincing
arguments both for individual researchers as well as their communities.

KonkolM
Notiz
i.e. research based on code and data

KonkolM
Hervorheben
introduced

KonkolM
Hervorheben
that are...it's always a question how much explanation for terms is needed in abstracts...

KonkolM
Hervorheben
digital (virtual sounds too fancy for what it)

KonkolM
Durchstreichen

KonkolM
Hervorheben
complicated

KonkolM
Hervorheben
exist

KonkolM
Hervorheben
is coming out of the blue

KonkolM
Hervorheben
Although this is somehow true, it contradicts your efforts. It sounds like it is possible disregarding your work.

KonkolM
Durchstreichen

KonkolM
Hervorheben
what is the one?

Zusammenfassung
Die Reproduzierbarkeit von rechnergestützter Forschung stellt alle Wissenschaftszweige
vor enorme Herausforderungen. In dieser Dissertation werden Technologien und Prak-
tiken entwickelt, um die Reproduzierbarkeit zu erhöhen und sie besser mit dem Prozess der
wissenschaftlichen Kommunikation zu verbinden, mit besonderem Fokus auf Geographie,
Geowissenschaften und GIScience. Basierend auf Containerisierung wird in dieser Arbeit
eine Plattform geschaffen, die bestehende akademische Infrastrukturen mit einem neuartigen
ausführbarem Forschungskompendium (Executable Research Compendium; ERC) verbindet.
Es wird gezeigt, dass das ERC die Transparenz, Verständlichkeit, Reproduzierbarkeit und
Wiederverwendbarkeit von Forschungsergebnissen, zum Beispiel für Peer-Reviews, verbessert,
indem es alle Teile eines computergestützten Arbeitsablaufs erfasst. Das Kernstück der ERC-
Plattform ist eine Software, welche die Rechenumgebung automatisch erfassen kann, so dass
die Autoren nur noch sogenannte computational notebooks, virtuelle Notizbücher die Text und
Analysecode verbinden, erstellen müssen. Die Arbeit untersucht weiter, wie Containerisierung
unabhängig von ERCs angewendet wird und werden kann, unter anderem bei einer komplexen
Analyse aus der Fernerkundung, für Datenwissenschaften im Allgemeinen sowie innerhalb
der Anwenderschaft der Programmiersprache R. Basierend auf diesen technischen Grundlagen
kommt die Arbeit zu dem Schluss, dass es funktionierende praktische Lösungen gibt, die
Reproduzierbarkeit durch geeignete Infrastruktur möglich machen und die Benutzung deutlich
vereinfachen. Mehrere nachgelagerte Anwendungen, die auf ERCs aufbauen, bieten neuartige
Möglichkeiten, die nächste Generation von Publikationen besser suchen und inspizieren zu
können.

Um zu verstehen, warum reproduzierbare Forschung nicht weit verbreitet ist, und um zur Ver-
breitung reproduzierbarer Forschungspraktiken beizutragen, untersucht die Dissertation weiter-
hin den Stand der Reproduzierbarkeit in der wissenschaftlichenDisziplin GIScience. Sie entwick-
elt und demonstriert Arbeitsabläufe, mit welchen die Durchführung von rechnerischen Analysen
besser in Peer-Review-Verfahren integriert werden können.

Es werden Empfehlungen gegeben, wie reproduzierbare Forschung in Peer-Review-Verfahren
(wieder) eingeführt werden kann und wie Praktiken um die höchstmögliche Reproduzierbarkeit
zu erreichen in der Wissenschaft normativ, lohnend und letztlich verpflichtend werden kön-
nen. Diese Empfehlungen stützen sich auf über 100 als irreproduzierbar befundenen Artikeln
aus der GIScience, auf die Erfahrungen aus über 30 erfolgreichen Reproduktionen von comput-
erbasierten Arbeitsabläufen in verschiedenen Wissenschaftsbereichen und auf die Erkenntnisse
von der Implementierung des ERC.

Neben der Weiterentwicklung der eingebrachten Konzepte und der Infrastruktur weist die
Dissertation auf weitergehende Themen zukünftiger Arbeit hin, wie zum Beispiel die Unter-
suchung von Prozessen für Code-Ausführung als Teil von Begutachtungen von Manuskripten,
oder Reproduktions- und Replikationsstudien für grundlegende Arbeiten in den betrachteten
Wissenschaftsdisziplinen. Die technischen und sozialen Barrieren für höhere Reproduzier-
barkeit sind stark mit anderen Transformationsprozessen in der Wissenschaft verwoben und
daher trifft die Verbesserung der Reproduzierbarkeit auf ähnliche Herausforderungen rund um
Kulturwandel und Nachhaltigkeit. Reproduzierbare Forschung ist jedoch schon heute machbar.
Die Übertragbarkeit von disziplinübergreifenden Erkenntnissen begünstigt die Etablierung
reproduzierbarer Forschungspraktiken, und mehr als andere Transformationen kann jene
zu mehr Reproduzierbarkeit aus zugänglichen und überzeugenden Argumenten sowohl für
einzelne Forscher als auch für ihre Gemeinschaften schöpfen.

Contents
Acknowledgement 7

Abstract 9

Zusammenfassung 11

Contents 13

1 Introduction 15
1.1 Scope . 15
1.2 Infrastructure & user experience . 16
1.3 Communities, incentives & policy . 18

2 List of publications 21
Infrastructure & user experience . 21
Communities, incentives & policy . 22

3 Opening the publication process with executable research compendia 25

4 Reproducibility and practical adoption of GEOBIA with open-source soft-
ware in Docker containers 39

5 AWeb service for executable research compendia enables reproducible pub-
lications and transparent reviews in geospatial sciences 65

6 Publishing computational research - a review of infrastructures for repro-
ducible and transparent scholarly communication 87

7 containerit: generating Dockerfiles for reproducible research with R 97

8 Ten simple rules for writing Dockerfiles for reproducible data science 103

9 The Rockerverse: Packages and applications for containerisation with R 129

10 Practical reproducibility in geography and geosciences 155

11 Reproducible research and GIScience: An evaluation using AGILE confer-
ence papers 169

12 Reproducible research and GIScience: An evaluation using GIScience con-
ference papers 193

13 CODECHECK: An Open Science initiative for the independent execution of
computations underlying research articles during peer review to improve
reproducibility 211

14 Geospatial metadata for discovery in scholarly publishing 235

15 Guerrilla badges for geoscience research packages 239

16 How to read a research compendium 247

17 Synopsis 257
17.1 Infrastructure & user experience . 257
17.2 Communities, incentives & policy . 260
17.3 Conclusion . 264
17.4 Outlook . 266

18 References 269

CV 277

Colophon 279

1 Introduction

1.1 Scope
This dissertation investigates ways to realise open reproducible research1 in computational
geospatial data science2. The work’s core idea is to use methods from mainstream IT to
capture and control computing environments in order to make the sharing, evaluating, and
extending of computational workflows become a streamlined part of scientific communi-
cation and peer review processes. As these technologies are complex, one main goal is
to open up the practices and methods for reproducible research by making them accessi-
ble, usable, and understandable for the broader communities of researchers in geography
and geosciences. This dissertation was created as part of the project Opening Reproducible
Research (o2r, Pebesma et al., 2020). The o2r project approaches the challenges of computa-
tional reproducibility from multiple angles, as, ultimately, the barriers to achieving higher
transparency, reproducibility, and reusability are neither only technical nor simply a ques-
tion of better community practices. Quite the contrary, all stakeholders in the scientific
community who participate in scholarly communication, be they authors, readers, review-
ers, journal editors, publishers, or universities, need to be involved to achieve one of the
hardest challenges ahead for science: cultural change that values, rewards, and, eventually,
requires computational reproducibility. That is why o2r as a research project as well as
this dissertation work spans fields of engineering, science, and metascience. More than ex-
pected at the outset of this PhD project, we ended up having to consider reducing barriers
not just related to individual researchers, motivations, and technological abilities, but also
their social and cultural environments. Therefore, the research summarised here also ranges
from engineering, i.e., providing the technical building blocks for more reproducibility, to
metascience, i.e., understanding the current state of practices, barriers, and potential around
reproducibility. Eventually, the work even approached science policy and included advocat-
ing for and actively engaging in opening reproducible research in the GIScience community
and beyond. This dissertation is one of two dissertation projects conducted in the o2r project
which greatly influenced and supported each other (cf. Konkol, 2019).

Brian Nosek describes the Center for Open Science’s (COS) comprehensive strategy for cul-
ture and behaviour change using a pyramidwith five highly interdependent layers (B. Nosek,
2019), shown in Figure 1. B. A. Nosek et al. (2021) describe the strategy in detail. This cul-
ture change pyramid categorises the publications of this cumulative dissertation and struc-
tures the Introduction and Synopsis sections. A similarly helpful concept was introduced
by Lawrence Lessig’s pathetic dot theory3, where he describes four forces that regulate our
lives as individuals. These forces can also help to describe the professional live of scientists,
with law providing the policies and incentives as well as possibly threatening sanctions,
with social norms and markets controlled by and providing value for the community, and ar-
chitecture as the made or found constraining facts and infrastructure. If applied to scholarly
communication and scientific progress, the important point is that all forces can be shaped
by scientists, just as the layers of the culture change pyramid.

1Reproducible research means that an independent party can execute the original code on the same dataset and
come to the same results. It is distinct from replicable, robust, and generalisable research, which provide different
combinations of the same or different data or code; see The Turing Way’s Table of Definitions.

2This new term is used with the intention to capture broadly all researchers who use computers “to measure
and describe features a features and phenomena on the Earth’s surface” as Brachman (2020) described ‘geography,’
and should be seen as interchangeable with lists like “geography, geosciences, and GIScience” used later in this
work.

3https://en.wikipedia.org/wiki/Pathetic_dot_theory

15

https://o2r.info
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://en.wikipedia.org/wiki/Pathetic_dot_theory
KonkolM
Hervorheben
Das würde ich oben einbauen, sonst klingt das wie eine Wdh.

KonkolM
Hervorheben
siehe Kommentar unten

KonkolM
Hervorheben
Ich würde diese Ref in den vorherigen Satz einbauen und diesen Satz weglassen

KonkolM
Hervorheben
Wenn das bedeuten soll, dass Wissenschaftler die Macht haben für Veränderungen, dann ist das etwas idealistisch. Viele sehen sich als Teil des Systems und haben nicht das Gefühl, etwas verändern zu können. "Aber die publishder, aber meine Supervisor, aber Unis mit ihren quantitativen Evaluationsmetriken..."

KonkolM
Hervorheben
Vielleicht macht es Sinn, ein bisschen mehr Motivation hinzuzufügen. Also was ist eigentlich das Problem? Warum ist es schlimm, wenn Paper nicht reprod. sind. Andererseits ist das ja schon in den Papern abgedeckt. Aber vielleicht nochmal hier in zwei, drei Sätzen. Man könnte das ganze hier noch in der Open Science Umbrella verorten, d.h., was wird dort alles abgedeckt (open data, open software) und wo sonst kann das hilfreich sein (open educational resources, citizen science).

Figure 1: Culture change pyramid. Image by Brian Nosek (licensed under CC BY-ND 4.0),
reproduced from the blog post Strategy for Culture Change.

1.2 Infrastructure & user experience
Thebottom two layers of the culture change pyramid are Infrastructure andUser Interface/Ex-
perience. At the beginning of the o2r project and this dissertation, the executable research
compendium (ERC) was designed by the o2r team. The ERC concept and the o2r repro-
ducibility service to create and examine ERCs provide the infrastructure and ensure a good
user experience for packaging computational research. The ERC has four core parts: data,
e.g., input data, pre-processed data, result data, software, e.g., scripts or special libraries, but
always a containerised runtime environment, documentation, e.g., developer docs, user docs,
but also the actual article, and UI bindings (Konkol, Kray, & Suleiman, 2019) as entry points
for interaction. The ERC, thereby, aims to make reproducible research not only possible but
even easy by building on the accessible literate programming paradigm (Wikipedia contrib-
utors, 2021) for the main document to capture text and workflow code. Furthermore, the
ERC enables new kinds of workflow steps for in-depth examination, including manipulation
and substitution of parts and reuse of results (Konkol & Kray, 2019). The only requirement
for researchers is to share their work in a computational notebook.

Figure 2: The parts of the executable research compendium: data, software, documenta-
tion, and UI bindings. Image from Nüst et al., 2017.

The ERC concept was described by the o2r team in Chapter 3 (Nüst et al., 2017). Core con-Nüst et al., 2017.
Opening the Publication
Process with Executable

Research Compendia

tributions of this work include designing the component architecture and software compo-
nents to integrate ERCs into scientific publishing systems and research infrastructures (Nüst,
2017a; Nüst & Schutzeichel, 2017), and implementing a prototype (Nüst, Kray, et al., 2018;
Nüst, 2021c). The architecture design and implementation were in part based on experiences
of making our own workflows reproducible and from collaborations on the reproducibility

16

https://www.cos.io/blog/strategy-for-culture-change
KonkolM
Unterstreichen
schwieriges wort

KonkolM
Durchstreichen

of complex geospatial data science analyses. The first full workflow made reproducible was
a complex analysis in the area of remote sensing (Knoth & Nüst, 2017) . Chapter 4 presents Knoth & Nüst, 2017.

Reproducibility and
Practical Adoption of
GEOBIA with
Open-Source Software in
Docker Containers

the collaboration with C. Knoth, during which we packaged a geographic and object-based
image analysis (GEOBIA) workflow based on a collection of Open Source tools in a container.
The packaging of further smaller workflows from different domains was presented through
several posters at the EGU General Assembly. These works explore use cases and tools
on geoscientific data analysis in general (Nüst, Boettiger, & Eddelbuettel, 2018), on open
environmental data analysis in citizen science (Nüst & Bartoschek, 2018), and on scalable
Earth observation analytics (Appel et al., 2017). The citizen science use case in particular
demonstrates the possibilities that computational notebooks provide for collaboration and
transparency, not only with respect to Open Data and Open Source code, but even down
to the Open Hardware of the measurement devices. What all these reproducible workflows
share is the use of containerisation (Wikipedia contributors, 2020). In fact, the idea to use
containerisation is at the core of most attempts (cf. Konkol et al., 2020) to connect repro-
ducibility with the goals of the bottom two layers of the above pyramid (Figure 1, namely
“Make it possible” and “Make it easy”.

The main part of this dissertation offers a set of publications that help to realise the encap-
sulation of computational environments with containerisation. To realise the concept of
ERCs, we designed and implemented a technical specification and web service for the
ERC. These specifications enable creation and interaction with ERCs, and they are com-
plemented with a system architecture that allows the ERC to be integrated into the existing
infrastructure for scholarly communication, e.g., journal publishing platforms, software reg-
istries, and data repositories. The ERC specification, the web service’s API specification, the Nüst, 2021. A Web

service for executable
research compendia
enables reproducible
publications and
transparent reviews in
geospatial sciences

architecture, and a reference implementation are described in Chapter 5 (Nüst, 2021c) and
publicly available via the o2r project website4. o2r’s specifications and reference implemen-
tation reflect only a few of several tools and services which were developed independently
and, for the most part, simultaneously during the time of this dissertation. We reviewed and
compared these options in Konkol et al. (2020) and list more in Nüst (2021c). Like most of Konkol, Nüst & Goulier,

2020. Publishing
computational research -
a review of
infrastructures for
reproducible and
transparent scholarly
communication

the reviewed platforms, the o2r system builds on the literate programming paradigm (i.e.,
computational notebooks) and containerisation. One core feature of the o2r reproducibility
service is the automated capturing of the computing environment. This feature relies on the
containerit R package (Nüst & Hinz, 2017, 2019), which was developed as a standalone tool

Nüst & Hinz, 2019.
containerit: Generating
Dockerfiles for
reproducible research
with R

for independent use (see Chapter 7). containerit’s unique feature is that is uses the state
of the session after execution of the complete workflow to capture all the required libraries
and tools. Unlike other approaches, containerit will not break if it faces an unconventional
declaration of dependencies and can bring forth indirect or hidden dependencies. Other
tools in the background of the ERC web service with potential for reuse are o2r-meta and
geoextent for automatic extraction of (geospatial) metadata and metadata conversion.

Although the openness of the o2r platform avoids a problematic lock-in, it is also sensible
to look into the ways researchers can use containerisation independent of specific in-
frastructures to make their research more transparent and reproducible. Therefore, two
publications investigate the state of the art of the core technology for sharing reproducible
workflows, i.e., containerisation, and the primary programming language, i.e., R, used in the
o2r project. A practical article (Nüst, Sochat, et al., 2020) published in the Ten Simple Rules Nüst et al., 2020. Ten

simple rules for writing
Dockerfiles for
reproducible data science

collection5 describes the crafting of bespoke computing environments with Docker contain-

4ERC specification: https://o2r.info/erc-spec/; System architecture: https://o2r.info/architecture/; web service
API: https://o2r.info/api/; demo server: https://o2r.uni-muenster.de/; all software and specifications are archived
on Zenodo at https://doi.org/10.5281/zenodo.2203843.

5https://collections.plos.org/ten-simple-rules

17

https://github.com/o2r-project/o2r-meta
https://o2r.info/geoextent/
https://o2r.info/erc-spec/
https://o2r.info/architecture/
https://o2r.info/api/
https://o2r.uni-muenster.de/
https://doi.org/10.5281/zenodo.2203843
https://collections.plos.org/ten-simple-rules
KonkolM
Hervorheben
it also demonstrates that the overall topic of Open Science is not limited to the technical but also societal factors as mentioned in UNESCO's OS definition from 2021.

KonkolM
Hervorheben
I think the systems in the review are more than attempts ;)

KonkolM
Hervorheben
need to say what a ref. implementation is?

KonkolM
Durchstreichen

ers (see Chapter 8). Explorations on the very broad area of “anything containers and R” led
to a large collaborative article describing the Rockerverse in Chapter 9 (Nüst, Eddelbuettel,Nüst et al., 2020. The

Rockerverse: packages
and applications for

containerisation with R

et al., 2020).

The final paper of this part on the practical foundations for working reproducibly is an
invited paper published in the Annals of the American Association of Geographers as part of
the Forum on Reproducibility and Replicability in Geography6. The Forum was compiled as a
follow-up to theworkshop on Reproducibility and Replicability inGeospatial Research at the
Spatial Analysis Research Center at Arizona State University in February 2019. In the article
(see Chapter 10) we present the state-of-the-art approaches for reaching a high degree ofNüst & Pebesma, 2020.

Practical reproducibility
in geography and

geosciences

computational reproducibility and discusses the challenges for practical reproducibility spe-
cific to geography and geosciences. The practical solutions are illustrated with an overview
of existing reproduction efforts and with new reproductions. Other articles from the Fo-
rum (Goodchild et al., 2020) provide diverse perspectives on the topic of reproducibility and
replicability, especially on more theoretical deliberations in geography, ethical replicability
in critical applications, and replication when working with data streams.

For the two lower layers of the culture change pyramid (Figure 1), namely Infrastructure and
User experience, the following research questions were formulated and are discussed in the
Synopsis (Chapter 17) based on the papers relevant to this theme (Chapters 3 to 10).

IUE1 How can packaging of computational analyses serve the needs of authors, publishers,
readers, and preservationists?

IUE2 Towhat extent can the process of capturing the runtime, software, data, andmetadata
of reproducible research packages be automated in geoscientific analyses?

IUE3 How can the ERC fit into the existing infrastructure of services and platforms for
research and publishing in geography and geosciences?

1.3 Communities, incentives & policy
The previous section presents an investigation of and solutions to technical challenges
around reproducible research in geography, geosciences, and GIScience based on tools and
infrastructure. To put these solutions into practice, not only do researchers have to adopt
them, but other stakeholders, including educational institutions, scholarly societies, and
publishers, must also support the transition. While educational institutions are important
to provide the needed training, scholarly societies and publishers are needed to shift
practices at journals and conferences, and all of these parties are crucial for creating the
environment to drive the cultural change process. Thus, we must answer the question of
how to increase provision and adoption of presented technical solutions to make better
practice through higher reproducibility normative, rewarding, and eventually required. The
text of the previous sentence that is set in italics represents goals of the top three layers
of the culture change pyramid. These layers are titled Communities, Incentives, and Policy.
They are very much intertwined and not strictly ordered, e.g., to shift policy, one must
think about incentives, and to provide incentives, one must consider the policies that can
support the incentives. Therefore, the works presented in this part of the dissertation often
span all three considered layers of the culture change pyramid and are collaborative efforts
that even go beyond spatial data sciences.

6The full list of articles is available at https://sgsup.asu.edu/forum-articles-reproducibility-and-replicability-
published-annals-american-association-geographers.

18

https://sgsup.asu.edu/sparc/RRWorkshop
https://sgsup.asu.edu/forum-articles-reproducibility-and-replicability-published-annals-american-association-geographers
https://sgsup.asu.edu/forum-articles-reproducibility-and-replicability-published-annals-american-association-geographers
KonkolM
Hervorheben
das meinte ich oben mit dem Kommentar zu der Macht der Wissenschaftler. Vielleicht habe ich das oben aber falsch verstanden, wenn doch, dann ist das inkonsistent.

KonkolM
Hervorheben
and funders

First, one must understand the state of reproducibility to build a convincing case for cul-
tural change. Maybe it is not that bad? Two papers of this dissertation (Chapters 11 and 12)
evaluate the reproducibility of GIScience research and complement related research from
the o2r project on reproducibility in geography and geoscience (Konkol, Kray, & Pfeiffer,
2019; Nüst & Pebesma, 2020). In the first (Chapter 11), a sample of 32 papers from the an-
nual AGILE Conference series was evaluated (Nüst, Granell, et al., 2018) using a novel set Nüst et al., 2018.

Reproducible research
and GIScience: An
evaluation using AGILE
conference papers

of criteria to assess the level of reproducibility across core categories of data-based science
(input data, preprocessing, methods/analysis, computational environment, results). Next, in
Chapter 12), the same methodology was transferred to the biannual GIScience conference
series, where 75 papers were assessed (Ostermann et al., 2020) . These articles also clearly Ostermann et al., 2020.

Reproducible research
and GIScience: An
evaluation using AGILE
conference papers

communicate the options and possible future practices to the respective audiences in the
community, including concrete recommendations for individuals, groups, and institutions
for how to contribute to the improvement of reproducibility in GIScience.

With these assessments, it is now possible for the GIScience Community, the culture change
pyramid’s middle layer, to take action. TheReproducible AGILE initiative was co-founded
during this dissertation to initiate a community discourse about reproducibility, discuss in-
centives for and recognition of reproducibility, and eventually shift policy, practices, and
norms. The initiative members organised a series of workshops, the first of which resulted
in the first of two assessment papers mentioned above (Nüst, Granell, et al., 2018). The
Reproducible AGILE team received financial support as an official AGILE Initiative7 to cre-
ate the AGILE Reproducible Paper Guidelines (Nüst, Ostermann, et al., 2021), which were
introduced in 20208 and made mandatory in 2021. Daniel Nüst served as chair of the re-
producibility committee for both events. The members of Reproducible AGILE continue to
organise the reproducibility review and to share their experiences and explore novel ways to
improve reproducible research adoption and practices (Granell et al., 2018; Nüst, Ostermann,
et al., 2020; Nüst, 2021d), e.g., understanding and improving reproducibility of graduate the-
ses (Granell et al., 2020).

In addition to contributions to the activities of Reproducible AGILE, the work of this dis-
sertation also co-founded an even broader Open Science initiative. Together with neuro-
scientist Stephen J. Eglen, University of Cambridge, the CODECHECK initiative (Eglen &
Nüst, 2019; Nüst & Eglen, 2021) was started to bring code execution (back) into peer review. Nüst & Eglen, 2021.

CODECHECK: An Open
Science initiative for the
independent execution of
computations underlying
research articles during
peer review to improve
reproducibility

Chapter 13 describes CODECHECK, which is a “non-tech” approach to computational re-
producibility. Just like the Reproducible AGILE initiative, CODECHECK aims to introduce
execution of computational workflows into the peer review process and relies on the judge-
ment of a peer codechecker, similar to how a peer reviewer evaluates the scientific merit
of an article. CODECHECK relies on a set of principles, seeks collaborations with existing
journals, and is realised with an open infrastructure9.

Finally, besides recognition and credit, there can also be more practical benefits to sharing
computational workflows in the form of ERCs. These benefits can also function as incen-
tives. Several beneficial downstream applications of ERCs were explored as part of this
dissertation. Chapters 14 to 16 describe using geospatial metadata for discovery of research Niers & Nüst, 2020.

Geospatial Metadata for
Discovery in Scholarly
Publishing; Nüst et al.,
2019. Guerrilla Badges
for Geoscience Research
Packages; Nüst,
Boettiger & Marwick,
2018. How to read a
research compendium

papers (Niers & Nüst, 2020), investigate distributing automatically generated badges with-
out stakeholder support (Nüst et al., 2019), and suggest how ERCs may change the way we
“read” articles, or rather “examine” workflows (Nüst, Boettiger, & Marwick, 2018).

7See the report of the AGILE Initiative https://osf.io/hupxr/; it extends the recommendations from the paper
towards more modern open practices beyond reproducibility.

8See report of the reproducibility committee: https://osf.io/7rjpe/.
9Details about partnering journals, publishers, and stakeholders in scientific publishing are available on the

website at https://codecheck.org.uk. The CODECHECK certificates, the register of checks, and further documents
and software are deposited on Zenodo: https://zenodo.org/communities/codecheck/.

19

https://agile-online.org/conference/
https://osf.io/hupxr/
https://osf.io/7rjpe/
https://codecheck.org.uk
https://zenodo.org/communities/codecheck/
KonkolM
Hervorheben
das fehlt glaube ich im Abstract, oder?

KonkolM
Hervorheben
Es ist im Paper beschrieben, aber vielleicht hier nochmal highlighten, dass CODECHECK ein Knüppel gegen viele Argumente ist? "Reprod. kostet zu viel Zeit, Reviewer können sich nicht auch noch den Code angucken, Es gibt keine rewards etc....." Vielleicht ist das auch eher discussion...

The following research questions were posed with connection to the top three layers of the
culture change pyramid (Figure 1), namely Communities, Incentives, and Policy, and are dis-
cussed in the Synopsis (Chapter 17) based on the papers relevant to this theme (Chapters 10
to 16).

CIP1 What are domain-specific challenges and solutions for the geosciences domain in the
context of reproducible publications?

CIP2 What new services and features can be built upon reproducible workflows, e.g., when
packaged as an ERC?

20

2 List of publications
The papers listed below form the cumulative dissertation and are chapters in this docu-
ment. They are grouped by the layers of the cultural change pyramid described in the
Introduction and discussed in the Synopsis. Each chapter starts with a cover page men-
tioning authors and the contributions, original publication venue with Source Normalised
Impact per Publication10 (SNIP), license, link to ERC (applicable if figures are based on data),
link to paper repository (where available), publication date (month/year), and publication
status. A comprehensive list of publications and talks from the project Opening Repro-
ducible Research and by Daniel Nüst can be found at https://o2r.info/publications/ and
https://orcid.org/0000-0002-0024-5046, respectively. Note that in the digital version of this
document, hyperlinks in the included PDFs do not work—please resort to the online version
or publisher PDFs for easy access to linked resources and references. Figure 3 illustrates all
publications, introduction, and synopsis in a word stem cloud.

Infrastructure & user experience
Knoth, C., & Nüst, D. (2017). Reproducibility and Practical Adoption of GEOBIA with Open-

Source Software in Docker Containers. Remote Sensing, 9(3), 290. https://doi.org/10.
3390/rs9030290

Konkol, M., Nüst, D., & Goulier, L. (2020). Publishing computational research - a review
of infrastructures for reproducible and transparent scholarly communication. Research
Integrity and Peer Review, 5(1), 10. https://doi.org/10.1186/s41073-020-00095-y

Nüst, D. (2021). A web service for executable research compendia enables reproducible publica-
tions and transparent reviews in geospatial sciences. https://zivgitlab.uni-muenster.de/d_
nues01/architecture-paper/

Nüst, D., Eddelbuettel, D., Bennett, D., Cannoodt, R., Clark, D., Daróczi, G., Edmondson, M.,
Fay, C., Hughes, E., Kjeldgaard, L., Lopp, S., Marwick, B., Nolis, H., Nolis, J., Ooi, H.,
Ram, K., Ross, N., Shepherd, L., Sólymos, P., Swetnam, T. L., Turaga, N., Petegem, C. V.,
Williams, J., Willis, C., & Xiao, N. (2020). The Rockerverse: Packages and Applications
for Containerisation with R. The R Journal, 12(1). https://doi.org/10.32614/RJ-2020-007

Nüst, D., & Hinz, M. (2019). Containerit: Generating Dockerfiles for reproducible research
with R. Journal of Open Source Software, 4(40), 1603. https://doi.org/10.21105/joss.01603

Nüst, D., Konkol, M., Pebesma, E., Kray, C., Schutzeichel, M., Przibytzin, H., & Lorenz, J.
(2017). Opening the Publication Process with Executable Research Compendia. D-Lib
Magazine, 23(1/2). https://doi.org/10.1045/january2017-nuest

Nüst, D., & Pebesma, E. (2020). Practical reproducibility in geography and geosciences.
Annals of the American Association of Geographers, 0(0), 1–11. https://doi.org/10.1080/
24694452.2020.1806028

Nüst, D., Sochat, V., Marwick, B., Eglen, S., Head, T., & Hirst, T. (2020). Ten Simple Rules for
Writing Dockerfiles for Reproducible Data Science. https://doi.org/10.31219/osf.io/fsd7t

10See https://www.journalindicators.com/methodology; the SNIP documents that the required number of pub-
lications for the dissertation has been published in ranked journals. It is used instead of the more common yet
largely considered broken metric Journal Impact Factor (JIF).

21

https://o2r.info/publications/
https://orcid.org/0000-0002-0024-5046
https://doi.org/10.3390/rs9030290
https://doi.org/10.3390/rs9030290
https://doi.org/10.1186/s41073-020-00095-y
https://zivgitlab.uni-muenster.de/d_nues01/architecture-paper/
https://zivgitlab.uni-muenster.de/d_nues01/architecture-paper/
https://doi.org/10.32614/RJ-2020-007
https://doi.org/10.21105/joss.01603
https://doi.org/10.1045/january2017-nuest
https://doi.org/10.1080/24694452.2020.1806028
https://doi.org/10.1080/24694452.2020.1806028
https://doi.org/10.31219/osf.io/fsd7t
https://www.journalindicators.com/methodology

Communities, incentives & policy
Niers, T., & Nüst, D. (2020). Geospatial Metadata for Discovery in Scholarly Publishing.

Septentrio Conference Series, 4. https://doi.org/10.7557/5.5590

Nüst, D., Boettiger, C., & Marwick, B. (2018). How to Read a Research Compendium.
arXiv:1806.09525 [Cs]. http://arxiv.org/abs/1806.09525

Nüst, D., & Eglen, S. J. (2021). CODECHECK: AnOpen Science initiative for the independent
execution of computations underlying research articles during peer review to improve
reproducibility. F1000Research, 10, 253. https://doi.org/10.12688/f1000research.51738.1

Nüst, D., Granell, C., Hofer, B., Konkol, M., Ostermann, F. O., Sileryte, R., & Cerutti, V. (2018).
Reproducible research and GIScience: An evaluation using AGILE conference papers.
PeerJ, 6, e5072. https://doi.org/10.7717/peerj.5072

Nüst, D., Lohoff, L., Einfeldt, L., Gavish, N., Götza, M., Jaswal, S. T., Khalid, S., Meierkort, L.,
Mohr, M., Rendel, C., & Eek, A. van. (2019). Guerrilla Badges for Reproducible Geospatial
Data Science (AGILE 2019 Short Paper). https://doi.org/10.31223/osf.io/xtsqh

Ostermann, F. O., Nüst, D., Granell, C., Hofer, B., & Konkol, M. (2020). Reproducible Research
and GIScience: An evaluation using GIScience conference papers. https://doi.org/10.31223/
X5ZK5V

22

https://doi.org/10.7557/5.5590
http://arxiv.org/abs/1806.09525
https://doi.org/10.12688/f1000research.51738.1
https://doi.org/10.7717/peerj.5072
https://doi.org/10.31223/osf.io/xtsqh
https://doi.org/10.31223/X5ZK5V
https://doi.org/10.31223/X5ZK5V

reproduc
research

data

comput

imag
papercontain

packag

docker
publish

softwar

code
scienc

reviewenviron
author

erc

public

result

user

analysi

workflow

execut
process journal

provid

project
articl

system
practic

version dockerfil

run

applic
requir

creat

access

includ

tool

codecheck

document

nüst

support

develop

method

inform

file

specif

build level

scientif

sourc

servic

communiti

giscienc

text

time

agil

share

chang

peer

interact

studi

infrastructur

approach

platform

check

evalu

object

set

manag

repositori

common

instal

rocker

model

badg

transpar

challeng

program

cloud

compendium

test

replic
exist

depend

improv

step

materi

script

refer

intern

zenodo

integr

interfac

assess

metadata

page

featur

natur

section

instruct

complex

increas

statist

communic

contribut

function

geograph

jupyt

report

adopt

api

geospati

licens

term

main

reader

scholar

appli

configur

origin

captur

geographi

issu

konkol

implement

local start

deploy
generat

compendia

discuss

futur

identifi

relat

input

collabor

connect

format

librari

rule

command

preserv

detail

host

mean

onlin

oper

web

machin

resourc

solut

biolog

containeris

control understand

base

reason

standard

analys

extend

independ

core

enabl

geoscienc

initi

reproduct

similar

technolog

limit

write

list

server

er

marwick

pebesma

search

languag

structur

o2r

autom

criteria

free

read

output

runtim

technic

work...ow

certif

current

engin

hinder

concept

fund

question

ensur
notebook

proceed

remot

updat

demonstr

python

recommend

digit

call

design

lack

learn

domain

spatial

stodden

abstract
focus

line

open

human

item

stack

boettig

direct

link

collect

content

detect

submiss

suggest
addit

combin

complet

cultur

effort

archiv

daniel

final

paramet

field

individu

investig

layer

maintain

manual

seri

confer

containerit

descript

guidelin

ust

benefit

continu

describ

scientist

short

actual

...le

relev

simpl

singl

aspect

disciplin

reduc

speci...c

binder

creation

effect

framework

pass

avail

geobia

kray

potenti

survey

settlement

workspac

accept

address

defin

editor

institut

multipl

scale

type

activ

compar

extens

strong

distribut

form

github

markdown

nuest

organis

valu

achiev

algorithm

categori

establish

experi

recent

associ

built

idea

reach

special

store

view

compon

concern

criterion

key

principl

size

tale

topic

exampl

goal
inspect

jone

usag

acknowledg

context

eglen

hub

lead

perform

product

regular

singular

conflict

container

easi

help

option

qgis
usa

american

bind

fix

knowledg

ontribut

peng

reus

team

ten

virtual

barrier

chapter

close

comment

conclus

eddelbuettel

examin

facilit

introduct

job

supplement

transfer

conductdatabas

educ

explor

impact

ostermann
templat

attribut

automat

copi

expect

foundat

segment

success

ui

under

architectur

dataset

found

geoinformat
manuscript

mention

mount

role

valid

advantag

cost

figur

introduc

ment

reusabl

consid

discoveri

editori

graphic

polici

pro

respons

add

cli

extract

note

sens

client

definit

differ

download

granel

instanc

internet

post

preprocess

stakehold

wilson

word

contributor

display

find

guid

novemb

reli

scalabl

sen

storag

sustain

academ

advanc

award

brunsdon

kubernet

nosek

offer

remain

shini

suitabl

tag

top

bioconductor

cluster

gigantum

make
parti

power

proprietari

sensit

answer

edg

en

...les

gis

incent

innov

minim

pipelin

produc

releas

repro

scienti...cci

foss

import

manipul

map

multi

session

variabl

websit

ad

blog

citat

corpus

default

divers

dynam

ed

expos

literatur

piec task

adapt

allow

argu

break

custom

dissert

donoho

due

easier

encourag

grant

hand

life

liter

ocean

polit

rang

recreat

respect

separ

skill

track

volum

wide

cran

gentleman

involv

mitig nation

shown

suit

wikipedia

wrote

altern

avoid

consider

date

earth

eas

hardwar

label

linux

portabl

posit

possibl

proper

pubm

qualiti

reana

recip

record

cover

curat

error

id

match

mechan

promot
proven

reprozip

request

shape

critic

der

germani

gil

green

hofer

low

phd

quick

real

reliabl

scope

visual

annal

center

decis

deriv directori

ideal

juli

lab previous

repeat

select

slight

snapshot

student

trust

typic

wickham

academi

artefact

broad

crucial

follow

handl

interpret

network

readabl

readi

retriev

submit

teach

ture

biostatist

block

box

edit

en.wikipedia.org

enc

enhanc

expertis

highlight

properti

render

respond

save

secur

ware

analyz

awar

click

commerci

conceptu

concret

ducibl

ioannidi

keyword

leverag

ma

miss

neurosci

observ

prepar

preprint

purpos

recognit

repo2dock

sampl

solv

assign

attempt

browser

classif

di...er

elif

extent

genom

lesson

lib

major

markus

move

overview

p450

repres

sandv

schutzeichel

serv

unit

window

workshop

xie

allair

compris

convent

doc

git

grow

hard
magazin

messag

moder

name

registri

restrict

stage

suffici

threshold

usabl

assist

background

care

cite

conclud

consist

deposit

dfg

easili

edzer

explicit

extern

flexibl

index

intens

iter

keshav

measur

motiv

p443

parallel

physic

realis

regist

renv

summari

target

taylor

titl
train

util

age

app

basi

binari

bioinformat

debug

demand

difficult

feedback

filter

geo

gpu

ii

knoth

launch

led

locat

modifi

particip

pattern

pe

persist

practis

propos

pub

tion

abil

aim

basic

cc

compos

comprehens

con...gur

depart

determin

devel

driven

german

iti

kr

licenc

load

mark

master

outsid

p438

p451

person

pin

port

printreceiv

risk

semant

stevedor

strategi

varieti

approv

barba

biol

cation

comparison

compil

correct

creativ

draft

friend

hinz

index.php

insid

land

left

paper...

subject

substitut

trace

trend

und

Figure 3: Word stem cloud. Contains all terms used in this document, including references,
excluding select stopwords (based on tidytext::stop_words and selected abbreviations, pub-
lisher names, code, markup, domains, etc.); figure is based on 92212 word stems, minimum
occurrence is manually set to 21 times; the top word stem ”reproduc” occurs 1743 times.

23

https://cran.r-project.org/package=tidytext

3 Opening tHe publication process witH
executable researcH compendia

Authors & contribution Nüst D (25%), Konkol M (25%), Pebesma E, Kray C, Schutzeichel
M, Przibytzin, H, Lorenz, J

Venue D-Lib Magazine (article peer-reviewed as part of the workshop RepScience 2016)
10.1045/january2017-nuest

Date 01/2017

Licence D-Lib Magazine Access Terms and Conditions (attribute, unabridged, for research
but not commercial purposes, “AS IS” basis)

25

http://www.dlib.org/about.html#access
http://repscience2016.research-infrastructures.eu/
https://doi.org/10.1045/january2017-nuest
http://www.dlib.org/about.html

Search	D-Lib:	 	 Go!

HOME 	|	 ABOUT	D-LIB 	|	 CURRENT	ISSUE 	|	 ARCHIVE 	|	 INDEXES 	|	 CALENDAR 	|	 AUTHOR	GUIDELINES 	|	 SUBSCRIBE 	|	 CONTACT	D-LIB

D-Lib	Magazine

January/February	2017
Volume	23,	Number	1/2
Table	of	Contents

	

Opening	the	Publication	Process	with	Executable	Research	Compendia

Daniel	Nüst*
Institute	for	Geoinformatics,	Münster
daniel.nuest	[at]	uni-muenster.de

Markus	Konkol*
Institute	for	Geoinformatics,	Münster
m.konkol	[at]	uni-muenster.de

Marc	Schutzeichel
University	and	State	Library,	Münster
m.schutzeichel	[at]	uni-muenster.de

Edzer	Pebesma
Institute	for	Geoinformatics,	Münster
edzer.pebesma	[at]	uni-muenster.de

Christian	Kray
Institute	for	Geoinformatics,	Münster
c.kray	[at]	uni-muenster.de

Holger	Przibytzin
University	and	State	Library,	Münster
holger.przibytzin	[at]	uni-muenster.de

Jörg	Lorenz
University	and	State	Library,	Münster
joerg.lorenz	[at]	uni-muenster.de

*Shared	co-first	authorship

	

https://doi.org/10.1045/january2017-nuest

	

Abstract

A	strong	movement	towards	openness	has	seized	science.	Open	data	and	methods,	open	source	software,	Open	Access,	open
reviews,	and	open	research	platforms	provide	the	legal	and	technical	solutions	to	new	forms	of	research	and	publishing.	However,
publishing	reproducible	research	is	still	not	common	practice.	Reasons	include	a	lack	of	incentives	and	a	missing	standardized
infrastructure	for	providing	research	material	such	as	data	sets	and	source	code	together	with	a	scientific	paper.	Therefore	we	first
study	fundamentals	and	existing	approaches.	On	that	basis,	our	key	contributions	are	the	identification	of	core	requirements	of
authors,	readers,	publishers,	curators,	as	well	as	preservationists	and	the	subsequent	description	of	an	executable	research
compendium	(ERC).	It	is	the	main	component	of	a	publication	process	providing	a	new	way	to	publish	and	access	computational
research.	ERCs	provide	a	new	standardisable	packaging	mechanism	which	combines	data,	software,	text,	and	a	user	interface
description.	We	discuss	the	potential	of	ERCs	and	their	challenges	in	the	context	of	user	requirements	and	the	established
publication	processes.	We	conclude	that	ERCs	provide	a	novel	potential	to	find,	explore,	reuse,	and	archive	computer-based
research.

Keywords:	Executable	Research	Compendium,	ERC,	Open	Access,	Containerization,	Research	Data,	Computational	Research

	

26

1	Introduction

Open	Access	is	not	only	a	form	of	publishing	that	ensures	research	papers	become	available	to	the	large	public	free	of	charge,	it	is
also	connected	to	a	trend	towards	Open	Science,	which	makes	research	more	transparent	(Nosek	et	al.,	2015,	and	see	also	Charles
W.	Bailey,	What	is	Open	Access?	and	Open	Access	to	Scientific	Information,	History	of	the	Open	Access	Movement).	To	fully	realise
Open	[computational]	Science	we	expect	everyone	can	reproduce	findings	because	access	is	granted	to	papers,	research	data,
methodology,	and	the	computational	environment.	In	parallel,	the	scientific	paper	"is	evolving	into	a	multi-part	distributed	object
that	can	include	an	article,	data,	software,	and	more"	(Hanson	et	al.,	2015).	Access	to	these	components	is	rarely	given,	making	it
challenging	to	archive	and	reproduce	methods	and	results.	Reasons	include	privacy	concerns	and	copyright	issues.	Another	key
obstacle	is	the	lack	of	standardized	means	for	sharing	all	the	parts	of	an	'evolved'	scientific	paper	in	an	easy	way	(Hanson	et	al.,
2015).

The	main	contribution	of	this	work	is	the	definition	of	a	compendium-based	publication	process.	It	facilitates	Open	Science	and
enables	new	ways	to	conduct	research.	Its	core	component	is	the	executable	research	compendium	(ERC),	which	opens	and
integrates	the	scientific	process	across	all	activities	and	stakeholders.	The	compendium	includes,	besides	the	actual	paper,	source
code,	the	computational	environment,	the	data	set,	and	a	definition	of	a	user	interface.	It	has	internal	connections	which	facilitate
new	ways	of	interacting	and	reuse.	Such	a	compendium	is	a	self-contained	entity	and	can	be	executed	almost	entirely	on	its	own,
requiring	only	a	generic	virtualization	environment.	ERCs	are	intended	for	the	huge	number	of	research	projects	which	live	on	a
researcher's	desktop	computer.	Larger	scale	undertakings	with	high	computational	or	storage	requirements,	e.g.	distributed
infrastructures,	and	using	external	third-party	services	("black	boxes")	are	out	of	scope	of	this	work	although	being	subject	to	vivid
research	(cf.	Chen	et	al.,	2016,	Goecks	et	al.,	2010).

The	paper	is	structured	as	follows.	The	next	section	provides	a	review	of	related	work	and	basic	concepts.	In	the	main	part,	we
explain	how	the	ERC	builds	upon	stakeholder	requirements	and	current	technologies.	We	describe	the	process	of	publishing	ERCs	and
conclude	by	highlighting	the	main	contributions	and	future	work.

	

2	Related	Work

In	this	chapter	we	introduce	the	term	"reproducibility"	and	Open	Access	as	motivators	of	an	open	publication	process.	Our	work
builds	on	the	concept	of	research	compendia/objects,	data	platforms,	and	methods	to	capture	software	environments.	We	also
summarize	key	challenges	in	open	reproducible	research.

	

2.1	Definition	of	Reproducibility

In	current	research,	talking	about	computational	reproducibility	can	lead	to	confusion	as	a	universally	accepted	definition	of	the
term	"reproducibility"	is	not	yet	established.	While	some	researchers	treat	"reproducibility"	and	"replicability"	as	interchangeable
terms	(Bollen	et	al.,	2015),	others	distinguish	them	carefully	(Leek	and	Peng,	2015;	Goodman	et	al.,	2016).	"Replicability"	is	given	if
researchers	receive	the	same	results	by	using	the	same	methodology	but	a	different	data	set	(Bollen	et	al.,	2015).	Research	findings
are	"reproducible"	if	researchers	are	able	to	compute	the	same	results	by	using	the	same	procedure	and	the	same	data	set	(Bollen	et
al.,	2015).	This	means	a	researcher	requires	the	entire	set	of	information	which	constitute	the	basis	of	the	results	reported	in	the
paper	including	data	sets,	source	code,	and	configuration	details	(Vandewalle	et	al.,	2009).	A	key	difference	between	the	two	terms
is	the	data	set	which	needs	to	be	different	from	the	originally	used	data	set	in	the	case	of	"replicability",	and	to	be	the	same	in	the
case	of	"reproducibility".	Consequently,	it	does	not	mean	reproducible	research	findings	are	true.	They	can	still	be	subject	to	flaws
in	the	study	design	(Leek	and	Peng,	2015).	However,	reproducible	outcomes	are	more	reliable	as	they	allow	other	researchers	to
understand	the	(computational)	steps	described	in	the	paper.	In	open	reproducible	research,	the	components	required	to	reproduce
the	results	are	publicly	available.	Other	scientists	are	thus	able	to	reuse	parts	for	their	own	research.

	

2.2	Open	Data	&	Open	Access

Today,	most	researchers	find	it	difficult	to	reproduce	the	analysis	reported	in	papers	published	5-10	years	ago,	or	even	recover	the
data.	For	instance,	Vines	et	al.	(2014)	reported	a	half-life	of	four	years	for	data	recovery	from	the	original	authors.	Nowadays	there
is	a	strong	trend	towards	publishing	scientific	papers	as	Open	Access,	meaning	anyone	has	free	access	to	the	published	material,
including	free	access	to	data	and	software	(cf.	The	Open	Definition:	"Open	data	and	content	can	be	freely	used,	modified,	and
shared	by	anyone	for	any	purpose.").	Different	models	exist	(cf.	Harnad	et	al.,	2004)	and	publishers	increasingly	offer	Open	Access
routes	for	research	papers.	For	instance,	PLoS-One's	policy	requires	authors	to	publish	data	by	default	(Bloom	et	al.,	2014).	The
Directory	of	Open	Access	Journals	(DOAJ)	lists	over	9000	journals.	Open	Access	is	a	key	topic	in	the	European	Union's	research
programme	Horizon	2020.	Dissemination	and	reuse	of	scientific	findings	shall	be	improved	by	making	them	accessible	at	no	charge
through	suitable	e-infrastructures	(European	Commission,	2015)	such	as	the	European	Open	Science	Cloud.

	

2.3	Research	Compendia	&	Research	Objects

Gentleman	and	Temple	Lang	(2007)	use	the	term	Research	Compendium	(RC)	to	refer	to	the	unit	of	scholarly	communication	which
includes	the	research	paper,	the	code,	and	the	data	with	a	"dynamic	document"	(cf.	Knuth,	1984)	at	the	core.	They	present	the
advantages	and	potential	uses	of	(executable)	research	compendia,	which	allow	to	completely	reproduce	the	computational	aspects
of	a	scientific	paper.	(Randomness	of	specific	simulations	or	machine	learning	methods	can	be	handled	by	setting	a	seed.	Numerical
differences	between	runs	can	be	mitigated	by	appropriate	rounding.	Both	these	aspects	require	careful	design	of	the	actual	analysis
and	are	beyond	the	scope	of	ERC.)	The	practical	implementation	focuses	on	"single	language	compendia",	which	are	essentially	the
respective	languages'	standard	packaging	mechanism	(e.g.	R	packages).	Stodden	et	al.	(2015)	developed	a	platform	for	sharing,
executing	and	validating	Research	Compendia.

27

Research	Objects	(RO)	are	"semantically	rich	aggregations	of	resources	that	bring	together	the	data,	methods	and	people	involved	in
(scientific)	investigations"	(Bechhofer	et	al.,	2013).	They	comprise	metadata	standards	and	bundling	of	any	kind	of	resource	across	a
range	of	scopes,	such	as	scientific	workflows	(Belhajjame	et	al.,	2015),	preservation	(Research	Object	BagIt	archive),	or
computational	jobs.	These	can	be	included	or	remote	(i.e.	linked)	resources.	ROs	are	also	Linked	Data	resources	themselves	and	can
be	managed	and	preserved	in	a	tailored	platform	(Palma	et	al.,	2013).

Both	Nature	and	Nature	Geosciences	published	about	the	need	to	publish	reproducible	code	(Nature	Editorial,	2014;	Easterbrook,
2014).	The	majority	of	scientific	journals	allow	adding	supplementary	material	to	publications,	and	hence	creating	and	publishing
Research	Compendia	or	Research	Objects	has	been	possible	for	a	long	time.	Yet	current	supplemental	material	frequently	looks	very
much	like	a	directory	on	the	researcher's	personal	computer.

	

2.4	Research	Data	Platforms

We	see	a	large	number	of	technical	solutions	for	research	repositories,	including	RunMyCode,	the	Open	Science	Framework,	Zenodo,
and	figshare	(see	Dave	Wilkinson's	"rubric"	for	platforms.)	All	these	platforms	provide	identification	(some	only	by	email;	others
support	ORCID	or	GitHub	identities),	uploading,	and	persistent	identifiers	for	citation	of	deposited	items.	All	platforms	have	a	data
size	limitation,	some	have	paid	upgrade	plans.	Some	sites	argue	users	should	trust	their	long-term	availability,	others	just	offer	the
service	as-is,	for	example,	RunMyCode	is	provided	on	an	"as	is"	and	"as	available"	basis.	All	these	platforms	are	fine	for	viewing	and
downloading,	but	none	of	them	actually	performs	the	computations	needed	to	carry	out	reproducible	research.	This	is	most	likely
due	to	recomputation	requiring	considerably	more	resources	than	storage,	and	thus	causing	substantial	costs,	and	security	concerns.
Also,	the	platform	would	need	to	understand	a	plethora	of	different	computational	setups	and	would	have	to	cater	for	execution	of
compendia	within	these.

	

2.5	Capture	Workflows	and	Runtime	Environments

Researchers	enjoy	to	conduct	their	research	in	an	environment	composed	of	software	of	their	own	choice.	Consequently,	the	number
of	unique	research	environments	approximates	the	number	of	researchers,	and	hence	expecting	one	standardised	computational
workflow	would	not	be	feasible.	But	the	complete	computational	environment	of	the	original	researcher,	the	runtime	environment,
is	an	important	aspect	of	reproducibility.	Different	approaches	to	capture	the	workflows	and	runtimes	can	be	chosen.

Regarding	workflows,	a	commonality	of	all	computational	sciences	is	carrying	out	a	number	of	steps	(process	input	file(s),	process
data	into	result,	e.g.	number	or	graph).	These	steps	are	ordered	and	must	be	documented	to	allow	understanding,	execution,	and
reproduction.	The	canonical	example	is	the	classic	unix	utility	"make"	(Mecklenburg,	2004),	which	executes	commands	according	to
the	instructions	in	a	Makefile.	The	concept	has	been	adapted	for	specific	scenarios,	e.g.	remake	for	data	analysis	in	R,	drake	for
data	workflow	management,	or	Taverna	(Wolstencroft	et	al.,	2013)	for	web-based	workflows.	Santana-Perez	et	al.	(2016)
demonstrate	a	semantic	modelling	approach	to	conserve	scientific	workflow	executions	based	on	semantic	vocabularies.	Thain	et	al.
(2015)	discuss	two	broad	approaches	to	capture	scientific	software	executions:	"preserving	the	mess,	and	encouraging	cleanliness".
They	provide	an	extensive	picture	on	technical	and	organizational	challenges	in	the	context	of	in-silico	experiments	and	present
prototypical	solutions	(e.g.	Umbrella).

Alternatively,	the	environment	can	be	confined	to	an	interpreter	of	a	particular	language,	such	as	R	(R	Core	Team,	2014).	The
environment	is	reproduced	if	the	correct	versions	of	the	interpreter	and	all	extension	packages/libraries/modules	are	used.	These
dependencies	quickly	become	complex	so	a	manual	documentation	is	not	feasible.	The	R	extension	packages	checkpoint	or	packrat
ease	the	process	of	reproducing	project	dependencies,	except	the	interpreter	itself.	ReproZip	(Chirigati	et	al.,	2013)	or	Parrot
(Thain	et	al.,	2015)	apply	tracing	techniques	to	capture	the	minimal	set	of	objects	and	commands	needed	for	an	analysis	and	use	it
to	build	a	virtual	machine	(VM)	or	container	image	for	execution.

Containerization	originates	from	packaging	applications	and	their	dependencies	for	deployment	in	cloud	infrastructures	(cf.	Dua	et
al.,	2014).	Containers	have	proven	to	be	a	suitable	technology	in	reproducible	research:	Howe	(2012)	lists	improvements
virtualization	and	cloud	computing	provide	for	reproducibility,	all	of	which	apply	directly	to	containerization.	Boettiger	(2015)
demonstrates	its	usage	for	computational	analysis	in	R	and	derives	best	practices.	Marwick	(2015)	accompanies	a	research	article	by
Clarkson	et	al.	(2015)	with	a	complete	research	compendium	containing	the	analysis	(also	available	on	GitHub).	Hung	et	al.	(2016)
use	containers	to	package	graphical	user	interface-based	research	environments	with	multiple	tools	from	multiple	languages	across
operating	systems	in	the	context	of	bioinformatics.

The	dominant	platform	for	container	is	Docker	(Merkel,	2014).	Its	images	are	created	using	a	recipe	called	Dockerfile	—	a	Makefile
with	inheritance	support	for	creating	containers.	Images	can	be	build	and	executed	on	any	machine	running	a	Docker	host,	and	are
distributed	in	ready	to	run	form	via	online	hubs,	for	example	Docker	Hub	or	Quay.

	

2.6	Challenges	in	Open	Reproducible	Research

Solutions	to	technical	and	legal	challenges	with	regard	to	implementing	reproducible	research	exist	(cf.	Stodden	et	al.,	2014).	Other
challenges,	such	as	the	question	of	incentives	and	developing	reward	mechanisms,	are	closely	connected	to	the	intricacies	of
academic	authorship	and	credit.	The	challenges	and	some	approaches	are	summarized	in	the	Wikipedia	article	on	academic
authorship,	for	example	the	individual	h-index	(George	A.	Lozano)	or	Nature's	author	contributions	statements.

Among	the	reasons	why	researchers	do	not	publish	reproducibly,	Borgman	(2007)	mentions	(1)	a	lack	of	incentives	in	terms	of
citations	or	promotion,	(2)	the	effort	required	to	clean	data	and	codes,	(3)	the	creation	of	a	competitive	advantage	over	other
fellows,	and	(4)	intellectual	property	issues.	Other	reasons	include	privacy	or	confidentiality	issues	(Glandon,	2012).	None	of	these
issues	can	be	solved	by	technical	solutions	alone.	Instead	they	require	a	discourse	within	the	scientific	community,	or	even	a
mindshift	to	"build	a	'culture	of	reproducibility'"	based	on	selfish	reasons	to	publish	reproducibly	(Markowetz,	2015).

28

Although	moving	the	relevant	parts	of	a	researcher's	hard	drive	to	public	and	citable	archives	is	a	step	forward	in	the	direction	of
Open	Access	to	research	findings,	we	believe	this	alone	will	not	convince	researchers	to	adopt	it	as	standard	practice.	Such	archived
workspaces	could	be	incomprehensible	(Easterbrook,	2014).	The	potential	reward	is	considered	smaller	than	the	possible	reputation
damage	or	expected	follow-up	work,	e.g.	support	questions.

Each	scientific	community	must	address	such	worries	to	make	publication	of	workspaces	an	effective	incentive	for	reproduction.
Encouraging	statements	such	as	Nick	Barnes'	column	"Publish	your	computer	code:	it	is	good	enough"	(Barnes,	2010)	pave	the	way
towards	venturing	reproducibility	of	software.	However,	they	also	highlight	the	necessity	for	communication	of	researchers'
uncertainties	regarding	reproducibility	as	a	deliberate	act	of	exposure	to	critics	and	competitors.

The	research	data	repositories	mentioned	before	support	reproducibility,	but	they	cannot	carry	out	the	actual	reproduction,	nor	do
they	suggest	conventions	for	doing	so	in	an	automated	fashion.	Although	they	are	designed	to	deposit	code	and	data	supplementing	a
scientific	paper,	none	of	them	require	documenting	the	runtime	environment,	under	which	the	reproduction	material	is	expected	to
reproduce	the	paper,	in	a	systematic	way.	This	puts	more	burden	on	the	original	author,	as	each	is	supposed	to	know	how	to
describe	this	in	a	generic	way.	The	same	burden	is	placed	on	a	reader	as	the	reproducer.

	

3	The	Executable	Research	Compendium
	

3.1	Stakeholders	and	Roles	in	the	Publication	Process

The	ERC	brings	together	perspectives	of	different	user	groups	involved	in	scientific	publications.	To	develop	a	common	ground	for
them,	we	first	consider	some	key	requirements	of	users	separately.	We	identified	these	requirements	in	discussions	including	experts
from	university,	library,	and	publishing	(members	of	the	project	team	and	external	partners	are	listed	here).

Authors	must	be	given	support	to	create	an	ERC	without	too	much	additional	work,	ideally	starting	from	their	digital	workspace	"as
is".	Since	filling	out	forms	for	metadata	is	often	perceived	as	a	daunting	and	time-consuming	task,	an	ERC	should	be	restricted	to	a
minimal	set	of	required	metadata.	Ideally,	the	needed	information	can	be	(semi-)automatically	deduced	via	existing	identifiers	and
catalogues,	such	as	DataCite	(Brase,	2009)	for	data	sets	and	ORCID	(Haak	et	al.,	2012)	for	researchers,	thus	avoiding	the	need	for
entering	them	multiple	times.	If	common	practices	for	reproducible	research	are	followed	then	creating	an	ERC	should	be	as	simple
as	manually	editing	a	configuration	file	and	running	a	single	command.

Readers	want	to	be	able	to	rerun	the	analysis	in	an	ERC.	On	a	basic	level,	a	compendium	must	provide	a	simple	"start"	button	to	run
an	analysis	and	a	traffic-light	like	signal	to	learn	about	the	result,	cf.	Elsevier's	Earth	and	Planetary	Innovation	Challenge	winning
submission	"One-Click-Reproduce"	by	Edzer	Pebesma.	A	green	light	shows	a	successful,	a	red	one	an	unsuccessful	reproduction	of	the
results.	Here	a	green	light	means	the	computational	steps	are	executable	and	the	results	are	equal	to	those	submitted	by	the
original	author.	A	red	light	means	this	is	not	the	case.	Either	way	the	status	light	is	no	indication	on	the	validity	of	the	findings.	At
an	advanced	level,	readers	can	examine	detailed	information	on,	for	example,	data	and	code	underlying	figures,	or	errors	preventing
successful	execution.	A	typical	reader's	question	might	be	about	assumptions	and	concrete	tools	the	authors	did	not	mention.
Moreover,	it	would	be	interesting	for	readers	to	see	how	the	results	change	and	if	the	conclusions	still	hold	true	after	manipulating
parameters.

Reviewers	must	be	put	in	the	position	to	scrutinize	a	piece	of	research.	While	potential	malicious	intent	of	the	submitting	authors	is
not	considered	here,	review	processes	still	involve	a	trust	component	as	far	as	scientific	and	scholarly	best	practices	are	concerned.
Reviewers	often	have	to	rely	on	the	analysis	in	a	research	paper	to	be	complete,	correct,	and	consistent	with	the	included
visualizations.	In	order	to	verify	the	analysis,	they	need	tools	to	recreate	computation-based	analyses	with	minimal	effort.	As	a
review	and	publication	process	is	well	established,	the	ERC	shall	align	itself	with	it.	It	becomes	the	item	under	review	and	should
help	to	increase	the	quality	of	the	review.	Since	this	also	increases	the	quality	of	journals,	ERCs	ultimately	serve	the	needs	of
editors,	authors,	readers,	and	publishers.

Libraries	and	publishers	make	research	articles	accessible	for	the	scientific	community	and	the	public.	However,	access	to	the
source	material	is	not	always	granted.	One	of	the	reasons	for	this	is	neither	libraries	nor	researchers	are	currently	familiar	with	a
publication	process	that	allows	for	including	procedures	used	to	produce	research	outcomes	(tables,	figures).	Any	new	tool	for	this
purpose	must	leverage	their	expertise	and	pay	attention	to	their	existing	workflows.

Curators	and	preservationists	require	the	reader's	basic	level	to	assess	a	compendium's	status.	A	compendium	run	must	entail	an
execution	of	the	contained	computation	and	an	automatic	validation	of	the	result	to	ensure	the	integrity	of	the	digital	asset.	Since
they	need	to	integrate	an	ERC	into	a	curation	workflow,	the	required	metadata	must	follow	standards	for	digital	preservation.	As
they	cannot	rely	on	the	execution	platform	to	be	persistent,	they	need	access	to	relevant	metadata	in	"their"	formats	independently
from	the	data	and	software	within	the	compendium.	Subsequently,	the	top-level	package	of	the	compendium	should	follow	a
preservation	standard.

To	fulfil	the	needs	of	these	different	user	groups,	we	define	conventions	in	the	remainder	of	this	chapter.	They	allow	to	create
research	compendia	supporting	automatic	execution,	and	to	create	services	for	executing	such	research	compendia.

	

3.2	Core	Parts	of	ERC

The	core	parts	of	an	ERC	are	data,	software,	documentation,	and	user	interface	(UI)	bindings	(see	Figure	1).

29

Figure	1:	The	core	parts	of	an	ERC	are	data,	software,	documentation,	and	UI	bindings.

Data	comprises	all	inputs	for	an	analysis,	ideally	starting	with	raw	measurements,	for	example,	in	form	of	text	files,	or	databases.

Software	comprises	code	created	by	a	researcher	and	all	underlying	libraries	or	tools	to	reproduce	the	analysis	in	form	of
scripts/source	code,	a	Dockerfile,	and	a	Docker	container.

Documentation	comprises	both	instructions,	such	as	a	README	file,	and	the	actual	scientific	publication,	e.g.	in	PDF	format,	any
supplemental	records,	and	metadata	in	standardized	formats.	The	actual	publication	is	the	main	output	of	the	compendium	and	the
core	element	for	validation.	An	important	metadata	element	are	licenses	for	the	different	parts	of	a	compendium.

UI	bindings	provide	linkage	between	research	components	and	user	interface	widgets.	They	can	be	used	to	attach	UI	widgets	to
static	diagrams	in	order	to	make	them	interactive.	Their	representation	can	be	stored	as	metadata	within	an	ERC	as	part	of	the
documentation.	The	resulting	UI	widgets	open	up	the	container	and	allow	readers	to	drill	deeper	into	results.	UI	bindings	can	unveil
parameters	which	are	required	for	a	comprehensive	understanding	but	are	often	buried	in	the	code.

	

3.3	Creation	and	Reproducibility

Two	approaches	for	creating	an	ERC	are	possible:	post-hoc	or	on-the-fly.

Post-hoc	creation	is	based	on	the	regular	workspace,	which	is	a	collection	of	files	(data,	code,	documentation).	Authors	of	a
publication	can	submit	a	workspace	to	an	ERC	building	service	to	generate	a	compendium.	Such	a	service	requires	complex	logic	and
user	intervention,	either	by	an	expert	on	the	service	provider	side	or	by	the	author,	to	detect	how	to	start	the	analysis	and	how	to
validate	its	result.	Following	best	practices	from	reproducible	research,	such	as	literate	programming	(Knuth,	1984)	or	having	a
default	main	file	and	execution	command	(comparable	to	a	Makefile),	can	considerably	reduce	the	required	intervention.	An	ERC
specification	can	support	this	with	a	"convention	over	configuration"	approach	(see	Wikipedia,	Convention	over	configuration,
Nicholas	Chen,	"Convention	over	Configuration"	and	also	Maven	standard	directory	layout).	Information	that	cannot	be	derived
automatically	must	be	elicited	during	the	submission	process,	ideally	with	pre-filled	forms.

Alternatively	the	creation	and	maintenance	of	a	compendium	happens	on-the-fly	while	carrying	out	research.	A	user	starts	with	a
template	compendium.	Since	the	compendium	evolves	with	the	work	in	progress,	it	can	be	executed	and	checked	regularly.

In	both	cases,	the	ERC	is	bound	to	a	specific	publication	document.	This	"exit	point"	is	also	well-defined	in	the	ERC	and	is	exploited
for	result	validation	and	to	highlight	changes	in	the	results	after	parameter	manipulation.

In	order	to	reproduce	an	analysis,	we	make	use	of	the	containerization	technology	Docker.	Storing	both	a	docker	image	and	the
corresponding	Dockerfile	creates	two	levels	of	reproduction:	(i)	the	ability	to	provide	the	original	runtime	environment,	and	(ii)
recreating	it	from	scratch,	potentially	in	a	more	recent	version.	Docker	mitigates	some	issues	for	the	reproduction	service	to	run	the
software	of	the	original	researcher,	for	example	with	a	varying	environment	of	the	workspace	(Linux,	Windows,	OS-X),	but	cannot
solve	others,	for	example	requiring	licensed	software	(MATLAB™,	ArcGIS™)	which	must	not	be	redistributed.

Existing	approaches	using	Docker	to	replicate	environments	(see	previous	chapter)	require	readers	to	follow	individual	written
instructions,	and	to	have	expertise	in	the	used	software	setup.	This	is	not	apt	for	a	one-click	execution	(for	readers)	nor	for
automatic	content	validation	(for	reviewers	and	curators).	The	ERC	defines	machine-readable	conventions	for	computer	systems	to
control	and	evaluate	the	embedded	container,	namely	command-line	interface	instructions	to	run	it	(e.g.	"docker	run"	as	part	of	ERC
metadata),	and	rules	to	check	a	successful	execution	based	on	the	created	workspace.	The	Dockerfile	used	to	build	this	container
defines	the	environment	and	command	for	analysis	execution.

After	an	ERC's	execution,	the	result	is	evaluated.	A	minimal	evaluation	relies	on	the	exit	code	of	the	main	process	in	the	container.
At	an	advanced	level,	checksums	or	contents	of	files	and	execution	logs	can	be	evaluated.

30

Once	the	analysis	can	be	executed	by	the	creation	service,	the	information	accessible	at	runtime,	e.g.	actually	loaded	modules	and
libraries	as	well	as	dataset	objects,	is	a	fast	and	reliable	way	to	derive	both	software	metadata	and	dataset	metadata.	The	potential
information	stretches	from	detailed	names	and	versions	of	attached	libraries	to	the	spatial	and	temporal	extent	of	the	data	subsets.
This	is	prone	to	be	more	correct	than	analysing	source	code,	using	system-wide	installed	software,	trying	to	read	all	imaginable	data
formats	while	assuming	all	data	files	in	a	workspace	are	actually	used,	or	manual	documentation.

Docker	is	well	suited	for	storing	and	transporting	software	and	its	dependencies,	but	it	does	not	serve	the	needs	of	data	repositories
and	archives	well,	that	are	concerned	with	bitstream	preservation	and	integrity	of	files.

	

3.4	Publication	Process

An	ERC	facilitates	a	scientific	publication	that	is	not	only	composed	of	a	paper	but	also	the	data,	the	source	code,	and	the	software
environment,	packaged	in	an	executable	manner.	The	executable	research	compendium	described	in	this	work	is	a	fundamental
component	of	the	proposed	publication	process	consisting	of	four	consecutive	steps	(see	Figure	2).	The	process	is	aligned	with	peer-
review	based	journals.	Their	existing	practices	and	protocols	can	be	applied	for	transfer	of	compendia	between	stages	and	handling
the	required	data,	such	as	related	communications	or	the	state	within	the	process.

Figure	2:	The	ERC-based	publication	process:	a	research	workspace	is	prepared	for	a	URC,	which	is
validated	 to	 become	 an	 ERC,	 which	 turns	 into	 an	 RERC	 after	 peer	 review,	 and	 eventually
published	as	a	PERC	to	be	used,	e.g.	for	subsequent	cycles.

In	the	first	subprocess,	the	author	prepares	the	research	material	as	described	in	the	previous	section	resulting	in	an	unvalidated
research	compendium	(URC).	A	URC	is	neither	executable,	nor	necessarily	visible	to	the	public,	but	it	ideally	contains	already	the
entire	research	material	including	data	set,	source	code,	and	the	software	environment.	A	URC	forms	the	input	to	the	validation
subprocess	which	involves	(i)	metadata	verification,	(ii)	the	error-free	execution	of	the	reproducible	parts	of	the	paper,	and	(iii)	a
confirmation	from	the	primary	author	that	the	automatically	reproduced	results	are	identical	to	the	actual	publication.	The	first	two
aspects	should	be	automated	as	part	of	a	submission.	If	the	validation	succeeds,	it	produces	an	executable	research	compendium
(ERC),	which	is	passed	on	to	the	next	subprocess.

The	review	process	focuses	on	human	inspection.	It	is	necessary	to	avoid	publishing	meaningless	or	questionable	compendia.	Human
inspection	can	be	done	by	library	staff	(e.g.	to	ensure	adherence	to	non-formal	criteria),	maintainers	of	a	data	repository	(e.g.	to
filter	offending	or	illegal	content),	journal	editors	and	peer	reviewers	(e.g.	to	warrant	scientific	quality	in	the	context	of	a	journal
submission).	If	the	review	process	has	a	positive	outcome,	it	produces	a	reviewed	executable	research	compendium	(RERC),	which
constitutes	the	input	to	the	final	subprocess:	publish.	During	this	subprocess,	a	RERC	is	enriched	(e.g.	by	assigning	DOIs/URIs)	and
then	made	accessible	as	a	published	executable	research	compendium	(PERC).	Researchers	can	reproduce	the	results	reported	in	a
PERC	via	a	single	click.	They	can	also	reuse	components	of	a	PERC	(e.g.	its	data)	for	their	own	research.	In	order	to	make	PERCs
discoverable	and	comparable,	there	has	to	be	a	minimum	of	meta	information	attached	to	them.

Finally,	if	the	authors	provide	UI	bindings	during	the	publication	process,	readers	can	interact	with	an	ERC	in	a	much	deeper	way.
For	example,	if	the	authors	specify	which	variables	in	the	code	contain	specific	threshold	values,	then	readers	of	the	PERC	can
interactively	change	them	—	i.e.	via	an	automatically	generated	UI	—	to	explore	whether	the	reported	outcomes	still	hold	true	for
different	threshold	values.	Another	benefit	relates	to	diagrams	and	visualizations:	readers	could	select	from	different	visualizations
to	more	easily	compare	it	to	a	diagram	in	a	second	paper.

31

	

3.5	Findability	and	Preservation

ERCs	can	have	layers	of	meta	information	which	are	divided	into	reproducibility	metadata	and	discovery	metadata.

Packages,	libraries,	and	specific	versions	of	software	is	crucial	information	for	reproducibility.	Therefore	these	must	be	made
available	for	the	URC's	validation.

The	ERC	itself	is	conceptualized	as	a	ready-for-ingest	digital	asset	as	defined	in	OAIS	reference	model	(CCSDS,	2012).	Its	outer
container	uses	the	BagIt	file	packaging	format	by	Kunze	et	al.	(2011).	It	provides	minimal	metadata	and	checksums	for	a	file	based
payload.	The	payload	comprises	at	least	(i)	the	aforementioned	Docker	image	(an	inner	container)	and	Dockerfile,	(ii)	metadata	files
in	different	formats	such	as	Codemeta,	DataCite	(Brase,	2009),	(iii)	the	workspace	of	the	conducted	research	including	code	and
data	files,	and	(iv)	created	output	documents,	e.g.	a	PDF	of	the	original	paper.	Research	data	and	code	can	be	stored	in	the	image
to	make	distributed	reproduction	easier	but	making	them	accessible	as	part	of	the	outer	container	is	advantageous	for	long-term
preservation.	This	is	also	the	case	for	the	metadata.

By	design	ERCs	encapsulate	any	information	relevant	to	the	reproduction	of	its	contents	(cf.	"Core	parts	of	ERC").	External
contextualization	of	an	ERC	can	be	achieved	by	generating	additional	discovery	metadata	and	ultimately	connecting	the	ERC	as	a
whole	to	the	Linked	Open	Data	cloud	(Bizer	et	al.,	2009)	by	using	discipline-specific	vocabularies	such	as	GeoSPARQL.	This	is	done	to
support	findability	of	the	ERC.	Semantic	references	make	ERC	metadata	interoperable	and	ready	for	discovery.

For	the	retrieval	of	software	metadata,	it	is	necessary	to	identify	software	dependencies.	The	metadata	included	in	an	ERC	also
provides	structural	information	needed	to	connect	the	entry	point	for	an	execution	with	the	internal	structure	of	the	underlying
parts	(code,	data,	text,	UI	bindings).	It	is	therefore	reasonable	to	start	connecting	the	available	information	about	the	underlying
parts	as	early	in	the	workflow	as	possible	and	thus	contextualize	the	files	within	an	ERC.

Our	specification	also	considers	preservation	requirements	by	extending	bitstream	preservation.	The	recreation	of	the	original
computational	environment	is	vital	when	rerunning	the	code	of	a	paper.	Jon	Claerbout's	idea	of	an	article	being	a	mere	advertising
of	the	underlying	scholarship	has	been	concisely	paraphrased	in	Buckheit	et	al.	(1995,	p.	5):	"The	actual	scholarship	is	the	complete
software	development	environment	and	the	complete	set	of	instructions	which	generated	the	figures".	Consequently,	when	it	comes
to	preservation,	this	complete	environment	must	be	included	and	the	instructions	must	be	executable.	This	refers	to	the	internal
structure	and	the	dependencies.

In	addition,	ERCs	can	be	integrated	into	the	existing	ecosystem	of	persistent	identifiers	using	mechanisms	to	uniquely	and
permanently	identify	the	involved	resources	and	agents.	Furthermore,	metadata	comprises	explicit	license	information,	ideally	using
well-known	abbreviations	or	vocabularies,	for	each	component	of	a	compendium.	Authors	must	be	assisted	in	defining	data,
software,	and	text	licenses,	as	this	is	a	tedious	but	crucial	aspect	of	openness	—	only	a	suitable	license	clearly	allows	and	defines
possible	reuse.

The	user	interface	definitions	(UI	bindings)	are	an	optional	element	of	an	ERC	and	allow	for	interaction	with	the	included	analysis.
On	top	of	that,	they	document	the	analysis	code	by	providing	a	guide	to	the	main	functions	and	their	manipulable	parameters.	We
see	different	approaches	to	generate	them	ranging	from	fully	automatic	to	manual	definition.	Fully	automatic	UI	bindings	analyze
the	code	and	generate	UI	widgets	based	on	the	input	type	(text,	number,	etc.).	UI	bindings	are	created	by	the	author,	for	example
by	means	of	adding	statements	in	the	source	code	or	by	using	a	software	designed	for	this	purpose.

	

3.6	Interaction,	Exploration,	and	Reuse

An	ERC	not	only	enables	third	parties	to	reproduce	the	original	research	results	(figures,	tables),	but	also	facilitates	interaction	with
them.	Because	an	ERC	transparently	abstracts	diverse	analyses,	i.e.	it	is	a	"white	box",	it	seems	trivial	to	build	a	web	service	which
downloads	a	research	compendium	from	a	repository,	unpacks	it,	executes	it,	and	returns	the	results	created.	This	extends	the
minimalistic	control	functionalities	described	before	with	relevant	features.	Once	reproducibility	becomes	easy	to	use	via	ERCs,
scientists	can	benefit	from	the	ability	to	drill	deeper	into	the	computational	instructions.	For	example,	they	can	interactively
investigate	whether	the	originally	reported	results	change	if	they	manipulate	an	underlying	parameter,	which	are	fixed	in	a	'classical'
article.	In	an	ERC	they	can	be	exposed	as	changeable	variables,	e.g.	via	dedicated	components	in	the	user	interfaces	such	as	a
slider.	The	original	author	could	provide	information	about	what	constitutes	a	reasonable	range	of	values	for	this	variable.	In
addition,	being	able	to	inspect	analysis	procedures	more	closely	can	help	in	detecting	errors	and	in	safeguarding	the	integrity	of	the
publication	process.	For	example,	a	reader	might	update	an	underlying	library	with	known	bugs	but	leave	the	ERC	otherwise
unchanged.

The	recent	Reinhart	and	Rogoff	case	(Reinhart	and	Rogoff,	2010;	Herndon	et	al.,	2014)	showed	how	damaging	it	can	be	when	a	paper
insufficiently	describes	the	analysis	on	which	its	conclusions	are	based.

	

4	Discussion
	

4.1	Approach

In	this	paper	we	propose	the	executable	research	compendium	as	a	new	form	for	supporting	the	creation	and	provision	of	research
results.	The	four	parts	of	an	ERC	open	up	archival	of	and	interaction	with	computational	research	with	the	following	improvements:
(i)	reviewers	obtain	tools	for	easily	validating	results	in	scientific	publications	submitted	by	researchers,	(ii)	results	are	well-
grounded	since	the	research	steps	and	data	described	in	an	article	are	shared,	and	(iii)	other	researchers	benefit	because	they
obtain	tools	for	accessing,	reusing,	and	extending	research	components.

32

The	problem	of	scientists	each	having	an	individual	workflow	is	tackled	by	packaging	not	just	the	workspace	with	data	and	code,	but
also	the	actual	publication,	the	runtime	environment,	and	UI	bindings.	ERCs	not	only	enable	third	parties	to	reproduce	the	original
research	and	hence	recreate	the	original	research	results	(figures,	tables),	but	also	facilitate	interaction	and	recombination,	e.g.
with	other	data	or	new	methods.	This	recombination	is	complex	and	probably	feasible	only	for	compatible	data	respectively
computational	methods	and	thus	restricted	to	particular	domains.

	

4.2	Distinction	of	ERC

ERCs	rely	on	the	concept	introduced	as	research	compendium	(RC)	by	Gentleman	and	Temple	Lang	(2007).	The	core	difference	to	an
RC	is	that	an	ERC	is	aware	of	its	complete	software	environment	and	contains	the	so	called	"transformation	software".	The
transformation	software	generates	different	views	(e.g.	PDF	documents	or	graphics)	from	the	RC	by	processing	code	chunks	within
dynamic	documents,	e.g.	by	passing	them	to	an	interpreter	of	the	so	called	"definition	language"	(Gentleman	and	Temple	Lang,
2007).	The	authors	mention	the	possibility	to	include	"general	purpose	software"	as	part	of	the	"auxiliary	software"	into	an	RC	in	case
a	version	must	be	specific	or	might	disappear.	ERCs	take	this	one	step	further	and	embed	all	software	required	to	run	the
compendium's	code,	including	the	interpreter	of	the	"definition	language".	It	effectively	removes	all	requirements	towards	the	host
machine	except	a	Docker	runtime.

Research	Objects	focus	in	the	linked	data	technology.	As	such,	they	are	characterized	by	aggregation	and	referencing	of	distributed
resources,	including	workflows	and	their	execution.	In	contrast,	ERCs	seek	to	provide	consistent	packaging	for	simple	reproduction
("one-click")	and	interlinking	within	the	contained	parts.	Both	ROs	and	ERCs	are	containers	for	research	data	and	code	needed	to
preserve	and	reproduce	an	analysis	but	they	approach	this	goal	from	different	directions	(cf.	RO	bundle).	ROs	focus	on	the	outer
perspective:	provenance,	dependency,	interconnections.	ERCs	target	the	inner	scope:	consistency,	completeness,	independence.

	

4.3	Creation	and	Usage

The	two	creation	patterns	support	the	majority	of	user	workflows.	Post-hoc	is	less	intrusive	during	research,	while	a	template	can
put	good	reproducible	research	practices	(e.g.	literate	programming)	into	effect.	It	remains	to	be	examined	which	approach	requires
less	effort	or	finds	higher	uptake	by	researchers,	and	if	the	expected	benefits	of	publishing	an	ERC	instead	of	a	classic	paper
outweigh	the	additional	efforts	for	authors.	In	any	case	researchers	have	to	adjust	their	workflows	to	remove	all	"manual"	tasks	in
favour	of	replicable	scripts.

The	packaging	format	specified	by	the	ERC	assists	different	applications	(e.g.	one-click	reproduce,	long-term	archival,	research
information	systems)	and	thus	allows	future	usage	independent	from	the	described	purposes.	The	runtime	packaging	feature	is	based
on	open	source	software	with	high	uptake	in	industry,	but	although	an	open	specification	process	is	underway	(cf.	the	Open
Container	Initiative),	longevity	issues	cannot	be	put	aside	at	this	point.

Storing	the	image	and	its	recipe,	i.e.	the	Dockerfile,	increases	the	chances	of	reproducing	work	long	after	the	original	publication.
With	this	burden	on	the	Dockerfile,	it	must	be	evaluated	what	criteria	it	shall	comply	with	for	long-term	archival,	because	clarity
and	extensiveness	(e.g.	explicit	versions)	outweigh	typical	concerns	(e.g.	image	size,	up-to-dateness).	Nevertheless,	ERCs	mitigate
some	of	Howe's	(2012)	challenges	for	virtualization,	e.g.	reuse	and	limitations	to	interactivity.

ERCs	do	not	cover	privacy	issues,	requiring	to	anonymize	data	prior	to	publication.	This	restriction	holds	for	other	publication	forms
as	well.	ERCs	cover	security	concerns,	because	the	Docker	container	provides	an	effective	sandboxing	mechanism.

Interactivity	is	confined	by	computation	time.	Because	manipulation	of	one	parameter	requires	a	rerun	of	the	whole	container,	an
execution	platform	needs	to	be	transparent	and	reliable	in	communicating	this	issue	to	the	user,	for	example,	by	indicating	the
expected	run	duration.

The	efforts	needed	to	create	an	ERC	can	be	minimized	by	using	automated	metadata	derivation.	This	aspect	also	applies	to	the
generation	of	UI	bindings,	which	must	be	possible	without	too	much	effort	by	the	author.	We	still	have	to	evaluate	to	which	extent
UI	bindings	can	be	generated	automatically.

	

4.4	Challenges

The	key	challenges	for	a	publishing	process	based	on	ERC	are	(i)	the	creation	of	ERCs	must	be	easy	for	authors,	(ii)	ERC-based
interaction,	discovery,	exploration,	and	reuse	must	provide	sufficient	benefits	for	scientists	to	result	in	a	broad	uptake	of	the
concept,	and	(iii)	ERCs	must	handle	diverse	workspaces	and	integrate	requirements	from	all	stakeholders.	The	adoption	of	the	ERC
will	be	limited	if	tackling	these	challenges	leads	to	a	system	that	is	too	complex	or	not	understood	by	users.

Some	core	aspects	of	the	publication	process	cannot	be	defined	to	the	required	level	of	detail	at	this	point,	namely	management	of
review	state	(Put	review	metadata	and	state	into	the	container	or	keep	it	outside?)	or	transfer	and	storage	(Can	journal	platforms
handle	ERC	file	sizes	and	execution?).	It	is	inevitable	to	accompany	the	concepts	in	this	work	by	a	practical	implementation	to	settle
these	questions.

Research	compendia	are	designed	to	support	science	during	preparation,	implementation,	and	publication.	However,	the	definition
of	ERCs	alone	cannot	enforce	correct	methodology	or	proper	reviews.	Communities	of	practice	have	to	develop	conventions	and	to
expand	education	to	put	compendia	into	effect.	Currently,	researchers	use	libraries	rarely	to	curate	their	work.	ERCs	can	connect
the	research	and	library	communities	as	a	step	towards	better	digital	curation,	one	of	the	major	challenges	for	memory	institutions
of	the	future.

	

5	Conclusion

33

Reproducible	research	is	a	goal	with	extraordinary	meaning	for	scientific	publications.	ERCs	provide	an	innovation	for	the	publication
process	by	opening	its	result	for	reuse.	Subsequently	they	help	to	implement	the	goals	of	Open	Science.	In	this	paper	we	provide	the
following	key	contributions:

a	compendium-based	publication	process

reproduction	of	the	computational	steps,	the	results,	and	visualizations	in	ERCs

packaging	computational	research	for	long-term	reproducibility

new	ways	of	interaction	with	research

Reproducible	research	can	only	be	realized	by	creating	technical	and	communicational	solutions	for	the	difficulties	outlined	above.
Our	design	focuses	on	the	interaction	of	the	different	roles	within	the	scientific	research	and	publication	culture.	The	executable
research	compendium	reduces	efforts	on	the	technical	side	of	reproducibility	and	thus	fosters	the	community’s	acceptance	of
openness	and	reproducibility	and	creates	the	basis	for	open	collaborations	between	scientists.

	

6	Future	Work

Because	ERCs	only	work	when	taking	care	of	the	specifics	of	both	a	scientific	domain	and	the	software,	we	expect	a	focussed
solution	to	deliver	best	results	for	users.	We	are	currently	in	the	process	of	developing	an	open,	formal	specification	for	ERCs	and	an
open	source	web-platform	allowing	users	to	build,	store,	execute,	and	interact	with	ERCs	in	the	context	of	computational
geosciences	in	R,	going	beyond	most	current	research	data	platforms	(see	Opening	Reproducible	Research	project	on	GitHub).

The	prototypical	implementation	will	be	subject	to	a	series	of	usability	evaluations	considering	the	views	of	all	stakeholders	and
roles.	In	particular,	the	usability	while	creating	ERCs	will	be	a	crucial	factor	for	the	acceptance	of	ERCs	as	a	form	of	publication.
Although	ERCs	are	designed	with	existing	platforms	and	workflows	in	mind,	a	practical	evaluation	of	their	successful	integration	is
needed,	i.e.	a	demonstration	of	a	complete	publishing	process	from	submission	on	a	journal	platform,	evaluation	during	review,
storage	in	repositories,	publication	and	interaction	on	an	online	platform,	and	long-term	archival.	Inherently	manual	steps	of	a
publishing	workflow,	e.g.	copy-editing,	create	new	challenges	for	systematic	interpretation	of	the	output.	A	user	friendly	interactive
execution	of	compendia	has	to	address	open	questions	regarding	parameter	transfer	and	partial	container	execution.

	

Acknowledgements

This	work	is	supported	by	the	project	Opening	Reproducible	Research	(see	also	Offene	Reproduzierbare	Forschung)	funded	by	the
German	Research	Foundation	(DFG)	under	project	numbers	PE	1632/10-1,	KR	3930/3-1	and	TR	864/6-1.

	

References

[1] Barnes,	Nick.	"Publish	Your	Computer	Code:	It	Is	Good	Enough."	Nature	News	467,	no.	7317	(October	13,	2010):	753-
753.	https://doi.org/10.1038/467753a

[2] Bechhofer,	Sean,	Iain	Buchan,	David	De	Roure,	Paolo	Missier,	John	Ainsworth,	Jiten	Bhagat,	Philip	Couch,	et	al.	"Why
Linked	Data	Is	Not	Enough	for	Scientists".	Future	Generation	Computer	Systems,	Special	section:	Recent	advances	in
e-Science	29,	no.	2	(February	2013):	599-611.	https://doi.org/10.1016/j.future.2011.08.004

[3] Belhajjame,	Khalid,	Jun	Zhao,	Daniel	Garijo,	Matthew	Gamble,	Kristina	Hettne,	Raul	Palma,	Eleni	Mina,	et	al.	"Using
a	Suite	of	Ontologies	for	Preserving	Workflow-Centric	Research	Objects".	Web	Semantics:	Science,	Services	and
Agents	on	the	World	Wide	Web	32	(May	2015):	16-42.	https://doi.org/10.1016/j.websem.2015.01.003

[4] Bizer,	Christian,	Tom	Heath,	and	Tim	Berners-Lee.	"Linked	Data	-	The	Story	So	Far."	International	Journal	on
Semantic	Web	and	Information	Systems	5,	no.	3	(33	2009):	1-22.	https://doi.org/10.4018/jswis.2009081901

[5] Bloom,	T.,	Ganley,	E.,	&	Winker,	M.	(2014).	Data	access	for	the	open	access	literature:	PLOS's	data	policy.	PLoS	Biol
12(2),	https://doi.org/10.1371/journal.pbio.1001797

[6] Boettiger,	C.	(2015).	An	introduction	to	Docker	for	reproducible	research.	ACM	SIGOPS	Operating	Systems	Review
49(1),	71-79.	https://doi.org/10.1145/2723872.2723882

[7] Bollen,	K.,	Cacioppo,	J.	T.,	Kaplan,	R.	M.,	Krosnick,	J.	A.,	&	Olds,	J.	L.	(2015).	Social,	behavioral,	and	economic
sciences	perspectives	on	robust	and	reliable	science:	Report	of	the	Subcommittee	on	Replicability	in	Science,
Advisory	Committee	to	the	National	Science	Foundation	Directorate	for	Social,	Behavioral,	and	Economic	Sciences.

[8] Borgman,	C.	(2007).	Scholarship	in	the	digital	age:	information,	infrastructure	and	the	internet.	MIT	University
Press	Group	Ltd.,	p.	336.	ISBN:	9780262026192

[9] Brase,	J.	"DataCite	—	A	Global	Registration	Agency	for	Research	Data."	In	Fourth	International	Conference	on
Cooperation	and	Promotion	of	Information	Resources	in	Science	and	Technology,	2009.	COINFO	'09,	257-61,	2009.
https://doi.org/10.1109/COINFO.2009.66

[10] Buckheit,	Jonathan	B.,	and	David	L.	Donoho.	"WaveLab	and	Reproducible	Research".	In	Wavelets	and	Statistics,
edited	by	Anestis	Antoniadis	and	Georges	Oppenheim,	55-81.	Lecture	Notes	in	Statistics	103.	Springer	New	York,

34

1995.	https://doi.org/10.1007/978-1-4612-2544-7_5

[11] CCSDS	(2012).	Consultative	Committee	for	Space	Data	Systems,	Reference	model	for	an	open	archival	information
system	(OAIS),	Magenta	Book	CCSDS	650.0-M-2,	Open	Archives	Initiative,	2012.

[12] Chen,	Xiaoli,	Sünje	Dallmeier-Tiessen,	Anxhela	Dani,	Robin	Dasler,	Javier	Delgado	Fernández,	Pamfilos	Fokianos,
Patricia	Herterich,	and	Tibor	Šimko.	"CERN	Analysis	Preservation:	A	Novel	Digital	Library	Service	to	Enable	Reusable
and	Reproducible	Research".	In	Research	and	Advanced	Technology	for	Digital	Libraries,	edited	by	Norbert	Fuhr,
László	Kovács,	Thomas	Risse,	and	Wolfgang	Nejdl,	9819:347-56.	Cham:	Springer	International	Publishing,	2016.
https://doi.org/10.1007/978-3-319-43997-6_27

[13] Chirigati,	F.,	Shasha,	D.,	&	Freire,	J.	(2013).	Reprozip:	Using	provenance	to	support	computational	reproducibility.
Proceedings	of	the	5th	USENIX	Workshop	on	the	Theory	and	Practice	of	Provenance,	Lombard,	IL,	USA,	April	2-3,
2013.	USENIX	Association	Berkeley,	CA,	USA.

[14] Clarkson,	Chris,	Mike	Smith,	Ben	Marwick,	Richard	Fullagar,	Lynley	A.	Wallis,	Patrick	Faulkner,	Tiina	Manne,	et	al.
"The	Archaeology,	Chronology	and	Stratigraphy	of	Madjedbebe	(Malakunanja	II):	A	Site	in	Northern	Australia	with
Early	Occupation".	Journal	of	Human	Evolution	83	(June	2015):	46-64.	https://doi.org/10.1016/j.jhevol.2015.03.014

[15] Dua,	R.,	A.	R.	Raja,	and	D.	Kakadia.	"Virtualization	vs	Containerization	to	Support	PaaS".	In	2014	IEEE	International
Conference	on	Cloud	Engineering	(IC2E),	610-14,	2014.	https://doi.org/10.1109/IC2E.2014.41

[16] Easterbrook,	S.	M.	(2014).	Open	code	for	open	science?.	Nature	Geoscience	7(11),	779-781.
https://doi.org/10.1038/ngeo2283

[17] European	Commission	(2015).	Access	to	and	preservation	of	scientific	information	in	Europe.	Report	on	the
implementation	of	Commission	Recommendation	C(2012)	4890	final.	https://doi.org/10.2777/975917

[18] Gentleman,	R.,	&	Temple	Lang,	D.	(2007).	Statistical	analyses	and	reproducible	research.	Journal	of	Computational
and	Graphical	Statistics	16:2,	1-23,	https://doi.org/10.1198/106186007X178663

[19] Glandon,	P.	(2011).	"Appendix	to	the	Report	of	the	Editor:	Report	on	the	American	Economic	Review	Data
Availability	Compliance	Project.	American	Economic	Review	101(3):	695-699.

[20] Goecks,	Jeremy,	Anton	Nekrutenko,	and	James	Taylor.	"Galaxy:	A	Comprehensive	Approach	for	Supporting
Accessible,	Reproducible,	and	Transparent	Computational	Research	in	the	Life	Sciences".	Genome	Biology	11	(2010):
R86.	https://doi.org/10.1186/gb-2010-11-8-r86

[21] Goodman,	S.	N.,	Fanelli,	D.,	&	Ioannidis,	J.	P.	(2016).	What	does	research	reproducibility	mean?	Science
Translational	Medicine	8(341),	341ps12-341ps12.	https://doi.org/10.1126/scitranslmed.aaf5027

[22] Haak,	Laurel	L.,	Martin	Fenner,	Laura	Paglione,	Ed	Pentz,	and	Howard	Ratner.	"ORCID:	A	System	to	Uniquely	Identify
Researchers."	Learned	Publishing	25,	no.	4	(October	1,	2012):	259-64.	https://doi.org/10.1087/20120404

[23] Hanson,	Karen	L.,	Tim	DiLauro,	and	Mark	Donoghue.	"The	RMap	Project:	Capturing	and	Preserving	Associations
Amongst	Multi-Part	Distributed	Publications".	In	Proceedings	of	the	15th	ACM/IEEE-CS	Joint	Conference	on	Digital
Libraries,	281-282.	JCDL	'15.	New	York,	NY,	USA:	ACM,	2015.	https://doi.org/10.1145/2756406.2756952

[24] Harnad,	Stevan,	et	al.	"The	access/impact	problem	and	the	green	and	gold	roads	to	open	access."	Serials	Review
30.4	(2004):	310-314.	https://doi.org/10.1080/00987913.2004.10764930

[25] Herndon,	T.,	Ash,	M.,	&	Pollin,	R.	(2014).	Does	high	public	debt	consistently	stifle	economic	growth?	A	critique	of
Reinhart	and	Rogoff.	Cambridge	Journal	of	Economics,	38(2),	257-279.	https://doi.org/10.1093/cje/bet075

[26] Howe,	B.	(2012).	Virtual	appliances,	cloud	computing,	and	reproducible	research.	Computing	in	Science	&
Engineering,	14(4),	36-41.	https://doi.org/10.1109/MCSE.2012.62

[27] Hung,	L.	H.,	Kristiyanto,	D.,	Lee,	S.	B.,	&	Yeung,	K.	Y.	(2016).	GUIdock:	Using	Docker	Containers	with	a	Common
Graphics	User	Interface	to	Address	the	Reproducibility	of	Research.	PloS	one,	11(4),	e0152686.

[28] Knuth,	Donald	E.	"Literate	Programming."	The	Computer	Journal	27,	no.	2	(May	1984):	97-111.
https://doi.org/10.1093/comjnl/27.2.97

[29] Kunze,	J.,	Littman,	J.,	Madden	L.,	Summers,	E.,	Boyko,	A.	&	Vargas,	B.	"The	bagit	file	packaging	format	(v0.	97)."
Washington	DC	(2011).

[30] Leek,	J.	T.,	&	Peng,	R.	D.	(2015).	Opinion:	Reproducible	research	can	still	be	wrong:	Adopting	a	prevention
approach.	Proceedings	of	the	National	Academy	of	Sciences,	112(6),	1645-1646.

[31] Markowetz,	Florian.	"Five	Selfish	Reasons	to	Work	Reproducibly."	Genome	Biology	16	(2015):	274.
https://doi.org/10.1186/s13059-015-0850-7

35

[32] Marwick,	Ben.	"1989-Excavation-Report-Madjebebe."	March	23,	2015.
https://doi.org/10.6084/m9.figshare.1297059.v2

[33] Mecklenburg,	R.	(2004).	Managing	Projects	with	GNU	Make,	3rd	Edition.	O'Reilly	Media,	ISBN:	0-596-00610-1.

[34] Merkel,	D.	(2014).	Docker:	lightweight	linux	containers	for	consistent	development	and	deployment.	Linux	Journal,
2014(239),	2,	ISSN:	1075-3583.

[35] Nature	Editorial.	"Code	Share".	Nature	514,	no.	7524	(2014):	536-536.	https://doi.org/10.1038/514536a

[36] Nosek,	B.	A.,	G.	Alter,	G.	C.	Banks,	D.	Borsboom,	S.	D.	Bowman,	S.	J.	Breckler,	S.	Buck,	et	al.	"Promoting	an	Open
Research	Culture".	Science	348,	no.	6242	(26	June	2015):	1422-25.	https://doi.org/10.1126/science.aab2374

[37] Palma,	Raúl,	Oscar	Corcho,	Piotr	Hołubowicz,	Sara	Pérez,	Kevin	Page,	and	Cezary	Mazurek.	"Digital	Libraries	for	the
Preservation	of	Research	Methods	and	Associated	Artifacts".	In	Proceedings	of	the	1st	International	Workshop	on
Digital	Preservation	of	Research	Methods	and	Artefacts,	8-15.	DPRMA	'13.	New	York,	NY,	USA:	ACM,	2013.
https://doi.org/10.1145/2499583.2499589

[38] R	Core	Team.	R:	A	Language	and	Environment	for	Statistical	Computing.	R	Foundation	for	Statistical	Computing.
Vienna,	Austria,	2014.

[39] Reinhart,	C.	M.,	&	Rogoff,	K.	S.	(2010).	Growth	in	a	time	of	debt	(digest	summary).	American	Economic	Review,
100(2),	573-578.	https://doi.org/10.2469/dig.v40.n3.19

[40] Santana-Perez,	I.,	Ferreira	da	Silva,	R.,	Rynge,	M.,	Deelman,	E.,	Pérez-Hernández,	M.	S.,	Corcho,	O.	(2017).
Reproducibility	of	Execution	Environments	in	Computational	Science	Using	Semantics	and	Clouds.	Future	Generation
Computer	Systems.	https://doi.org/10.1016/j.future.2015.12.017

[41] Stodden,	V.,	Leisch,	F.,	&	Peng,	R.	D.	(Eds.).	(2014).	Implementing	reproducible	research.	CRC	Press.

[42] Stodden,	V.,	Miguez,	S.	and	Seiler,	J.	(2015).	Researchcompendia.	org:	Cyberinfrastructure	for	reproducibility	and
collaboration	in	computational	science.	Computing	in	Science	&	Engineering,	17(1),	pp.12-19.

[43] Thain,	D.,	Ivie	P.,	Meng,	H.	(2015).	Techniques	for	Preserving	Scientific	Software	Executions:	Preserve	the	Mess	or
Encourage	Cleanliness?.	https://doi.org/10.7274/R0CZ353M

[44] Vandewalle,	P.,	Kovacevic,	J.,	&	Vetterli,	M.	(2009).	Reproducible	research	in	signal	processing.	IEEE	Signal
Processing	Magazine,	26(3),	37-47.	https://doi.org/10.1109/MSP.2009.932122

[45] Vines,	T.	H.,	Albert,	A.	Y.,	Andrew,	R.	L.,	Débarre,	F.,	Bock,	D.	G.,	Franklin,	M.	T.,	Rennison,	D.	J.	(2014).	The
availability	of	research	data	declines	rapidly	with	article	age.	Current	Biology	24(1),	94-97.
https://doi.org/10.1016/j.cub.2013.11.014

[46] Wolstencroft,	K.,	Haines,	R.,	Fellows,	D.,	Williams,	A.,	Withers,	D.,	Owen,	S.,	Soiland-Reyes,	S.,	Dunlop,	I.,	Nenadic,
A.,	Fisher,	P.,	Bhagat,	J.,	Belhajjame,	K.,	Bacall,	F.,	Hardisty,	A.,	Hidalga,	A.,	Vargas,	M.,	Sufi,	S.,	Goble,	C.	The
Taverna	Workflow	Suite:	Designing	and	Executing	Workflows	of	Web	Services	on	the	Desktop,	Web	or	in	the	Cloud.
Nucleic	Acids	Research	41,	no.	W1	(1	July	2013):	W557-61.	https://doi.org/10.1093/nar/gkt328

	

About	the	Authors

Daniel	Nüst	is	a	researcher	at	the	Institute	for	Geoinformatics,	University	of	Münster.	He	completed	his	studies	in	Münster	with	a
Diploma	in	Geoinformatics	in	2011	and	afterwards	worked	at	52°North	Initiative	for	Geospatial	Open	Source	Software	as	a	consultant
and	software	developer.	Since	2016	he	has	worked	on	creating,	storing	and	executing	reproducible	research	packages	in	the	DFG-
project	"Opening	Reproducible	Research".

	

Markus	Konkol	is	a	research	associate	in	the	DFG-project	"Opening	Reproducible	Research"	at	the	Institute	for	Geoinformatics,
University	of	Münster.	He	is	currently	doing	his	Ph.D.	in	the	DFG-funded	project	Opening	Reproducible	Research	that	aims	at
facilitating	access	to	and	interaction	with	research	results.	His	main	topic	is	about	interconnecting	the	textual	publication,	data
sets,	source	code	and	UI	elements	in	order	to	assist	scientists	in	exploring	and	creating	dynamic	publications.

	

Marc	Schutzeichel	is	a	research	associate	in	the	DFG-project	"Opening	Reproducible	Research".	He	works	at	the	University	and	State
Library,	Münster.

	

Edzer	Pebesma	is	professor	of	Geoinformatics	at	University	of	Münster	since	2007.	He	is	developer	and	maintainer	of	several	popular
R	packages	for	handling	and	analyzing	spatial	and	spatiotemporal	data	(sp,	spacetime,	gstat),	co-author	of	the	book	Applied	Spatial
Data	Analysis	with	R,	and	active	member	of	the	r-sig-geo	community.	He	is	Co-Editor-in-Chief	for	the	Journal	of	Statistical	Software
and	Computers	&	Geosciences,	and	associate	editor	for	Spatial	Statistics.

	

Chris	Kray	is	a	professor	of	Geoinformatics	at	the	Institute	for	Geoinformatics	(ifgi)	at	the	University	of	Münster.	His	research

36

interests	include	location-based	services,	smart	cities	and	human-computer	interaction	(in	particular:	interaction	with	spatial
information).	Chris	is	the	scientific	coordinator	of	the	ITN	"GEO-C:	enabling	open	cities"	at	ifgi,	where	he	works	on	realising
transparency,	accessibility	and	privacy	protection	in	the	context	of	smart	cities.

	

Holger	Przibytzin	is	Department	Manager	of	Scientific	Information	Systems	at	the	University	and	State	Library,	Münster.

	

Jörg	Lorenz	is	Head	of	the	Science	and	Innovation	department	of	the	University	and	State	Library,	Münster.

	

(At	the	authors'	request	on	June	14,	2017,	the	publication	year	2017	was	added	to	Reference	No.	40,	and	the	publcation	year	was	corrected	to	2015	for
Reference	No.	43.)

Copyright	®	2017	Daniel	Nüst,	Markus	Konkol,	Marc	Schutzeichel,	Edzer	Pebesma,	Chris	Kray,	Holger	Przibytzin	and	Jörg	Lorenz

37

4 Reproducibility and practical adoption of
GEOBIA witH open-source software in
Docker containers

Authors & contribution Christian Knoth (50%), Daniel Nüst (50%)

Date 03/2017

Venue Remote Sensing (SNIP 2020: 1.71) 10.3390/rs9030290

Licence Creative Commons Attribution (CC BY 4.0)

39

https://www.journalindicators.com/indicators/journal/86430
https://doi.org/10.3390/rs9030290

remote sensing

Article

Reproducibility and Practical Adoption of GEOBIA
with Open-Source Software in Docker Containers

Christian Knoth * and Daniel Nüst

Institute for Geoinformatics, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany;
daniel.nuest@uni-muenster.de
* Correspondence: christian.knoth@uni-muenster.de; Tel.: +49-251-833-3056

Academic Editors: Norman Kerle, Markus Gerke, Sébastien Lefèvre and Prasad S. Thenkabail
Received: 30 December 2016; Accepted: 6 March 2017; Published: 18 March 2017

Abstract: Geographic Object-Based Image Analysis (GEOBIA) mostly uses proprietary software,
but the interest in Free and Open-Source Software (FOSS) for GEOBIA is growing. This interest
stems not only from cost savings, but also from benefits concerning reproducibility and collaboration.
Technical challenges hamper practical reproducibility, especially when multiple software packages are
required to conduct an analysis. In this study, we use containerization to package a GEOBIA workflow
in a well-defined FOSS environment. We explore the approach using two software stacks to perform
an exemplary analysis detecting destruction of buildings in bi-temporal images of a conflict area.
The analysis combines feature extraction techniques with segmentation and object-based analysis to
detect changes using automatically-defined local reference values and to distinguish disappeared
buildings from non-target structures. The resulting workflow is published as FOSS comprising
both the model and data in a ready to use Docker image and a user interface for interaction with
the containerized workflow. The presented solution advances GEOBIA in the following aspects:
higher transparency of methodology; easier reuse and adaption of workflows; better transferability
between operating systems; complete description of the software environment; and easy application
of workflows by image analysis experts and non-experts. As a result, it promotes not only the
reproducibility of GEOBIA, but also its practical adoption.

Keywords: reproducibility; GEOBIA; Docker; conflict monitoring; reproducible research;
object-based image analysis; QGIS; containerization

1. Introduction

1.1. Motivation

For a scientific method to gain impact in research, it must be understandable and replicable
by fellow scientists. To gain impact in practice, it also needs to be easy to adopt by users from
different fields. In computational sciences, such as Geographic Object-Based Image Analysis (GEOBIA),
replicability requires access to code and data. Practical applicability in addition requires ease of use and
the customizability of methods. In this work, we present a novel solution for the GEOBIA community
to conduct research in a reproducible way by packaging code, data and even the required runtime
environment in executable units called containers. We discuss the dilemma of balancing reproducibility,
ease of use and the customizability of containerized methods and propose an approach to enable
interaction with those methods through parameterized containers and a graphical user interface. The
solutions can foster reproducibility and practical adoption of complex workflows, not least because
they rely on Free and Open-Source Software (FOSS).

Remote Sens. 2017, 3, 290; doi:10.3390/rs9030290 www.mdpi.com/journal/remotesensing40

Remote Sens. 2017, 3, 290 2 of 24

1.2. Reproducible Research

Openness in research is not a new topic, but there is a recent trend towards transparency and
availability under the terms Open Science and Open Access (cf. [1]). All stakeholders in the research
process contribute rules, incentives or guidelines to foster openness: on the funding side, the European
Union requires Open Access as part of the Horizon 2020 framework programme (cf. [2]) and builds
the European Open Science Cloud [3]; on the publishing side, journals such as Science [4] and
Bioinformatics [5] encourage reproducibility; on the research institution side, scientists themselves
argue for reproducibility with “Five selfish reasons to work reproducibly” [6], develop guidelines like
the Vienna principles [7], or publish “Ten Simple Rules for Reproducible Computational Research”
arguing in favour of a proper scientific workflow simply to be able to reproduce your own results [8].
A core notion of all of these activities is the ideal to publish data, methods, and software along with
scholarly publications.

A definition of the term reproducibility is far from trivial, not least because it is often used together
with other terms to describe different levels of redoing. The Vienna Principles’ definition focuses on
traceability [7]; others treat “reproducibility” and “replicability” as interchangeable [9] or completely
different terms [10]; others qualify the term further, e.g., “computational reproducibility” [5].

For the remainder of this work, we use “reproduce”, “reproducibility” or “computational
reproducibility” to say a third party can re-run an analysis using code and data provided by the
author of a published work, and this execution creates the same computational result (following the
definition by Peng [5]). Besides technical difficulties, which is the focus of this work, computational
reproducibility is likewise a question of proper practices. For example, researchers must fix
seeds of random number generators [8], design transparent processing workflows [11] or utilize
virtualization [12]. Nevertheless, the uniqueness of data (e.g., it can only be captured once by one
sensor) or processing environments (e.g., supercomputers) can make “real” replication of results
impossible, so that trust in the applied methods must be established instead [13]. In (GE)OBIA, the
term “reproducible” is thus far used to describe a shift from manual analysis (based on interaction
with a user interface) to script-based analysis using sets of processing steps and classification rules (cf.
[14–16]).

Packaging data, code and documentation for reproducibility was previously described under
the term research compendia by means of programming language-specific packaging mechanisms
[9,17] or as research objects with a focus on workflows using semantic enrichment and provenance [18].
Alternative approaches to create self-contained packages for reproducibility are tracing techniques
(cf. [19,20]).

1.3. FOSS for GEOBIA

To achieve trust in computational reproducibility, open-sourcing of workflows and the underlying
software is crucial. While benefits of Free and Open-Source Software for business and security have
been documented widely (see for example [21] and [22]), the important aspect of FOSS in science is
the potential for scrutiny and collaboration. FOSS facilitates audits down to the level of the source
code. It also promotes the reuse, improvement and adaption of a methodology or software. FOSS
licensing models (for a quick introduction we recommend http://choosealicense.com/) allow to
combine individual contributions of functional parts into a solution for a larger problem at hand. FOSS
projects must allow (technically and legally) maintenance and re-purposing by third parties. This
modularity lies at the roots of many open-source software projects and is propagated by the Unix
philosophy [23]: Each programme should only provide a specific feature and excel at it.

A number of publications at GEOBIA conferences over the last few years demonstrate the growing
interest in an FOSS approach to GEOBIA. For example, [24] developed a workflow for urban Land
Use and Land Cover (LULC) classification using GRASS GIS and R. They also published the analysis
reproducibly as an executable notebook. The work in [25] used the Orfeo ToolBox and R for automated
selection of segmentation parameters and classification of urban scenes. The work in [26] applied

41

Remote Sens. 2017, 3, 290 3 of 24

GRASS GIS to map impervious surfaces using aerial images and LIDAR (Light Detection and Ranging)
data. Specific OBIA FOSS projects exist, as well; for example GeoDMA [27] and InterIMAGE [28] for
desktop environments or InterCloud [29] for cloud computing infrastructures. Nevertheless these
activities are still in the minority.

1.4. Balancing Reproducibility and Customizability for Practical Adoption

Complex workflows based on FOSS often integrate a number of independent and interdependent
tools. These building blocks are developed by different communities and in differing maintenance
cycles. Their use can be visible or invisible (e.g., transitive dependencies) to the analyst. This hampers
reproducibility because of potential compatibility conflicts between different software packages in
changing versions. Containerizing a computational method with all required software and data
mitigates these problems because it eliminates the need to recreate the original runtime environment
on the executing computer. In addition to the positive implications for research (see Section 1.2), we see
a high potential in this approach to foster practical adoption of new GEOBIA methods. One main
barrier to the application of GEOBIA approaches by practitioners besides cost factors are technical
challenges in adopting complex analysis methods for their use case. Containerization can significantly
simplify this process by providing non-experts with easy access to complex methods.

However, another important aspect with regard to practical adoption is the transferability of a
method, i.e., the applicability to different study areas or different image types. GEOBIA facilitates
the development of adaptive and transferable workflows, e.g., through the inclusion of context
knowledge and human semantics [30]. There has been significant progress in the GEOBIA community
concerning transferability, e.g., through automatic determination of segmentation parameters [31,32]
or classification thresholds [33] and fuzzy classification [34]. However, although the workflows are
increasingly robust, some adaptions (e.g., of segmentation parameters or classification thresholds) are
usually necessary to tune an analysis method to a specific study area or image type [35,36]. Therefore,
the possibility to customize a GEOBIA method is an important requirement for practical adoption,
which can be hampered if analysis tools are containerized as black boxes without manipulation
options. To reconcile reproducibility and customizability and thereby facilitate practical adoption,
containerization should allow one to change model parameters or to use one’s own input data in a
containerized method. For widespread adoption, a Graphical User Interface (GUI) is required.

1.5. Contribution and Overview

The main contribution of this work is a fully-reproducible and open workflow for Geographic
Object-Based Image Analysis (GEOBIA). We package a GEOBIA example study including the data
and specific combination of software in an executable container. The container is parameterized so
that the analysis can be evaluated and adapted. Users can interact with the container and manipulate
an analysis through a GUI. The container is based on mainstream IT technology, and the software is a
collection of general-purpose scripts, image analysis libraries and Geographic Information Systems
(GIS). All components are FOSS. The implemented method detects destruction in a bitemporal image
subset of a conflict area and builds on previous work [37,38]. The application of remote sensing
for monitoring of human rights issues has been explored in a number of studies, and GEOBIA has
proven to be a promising tool, e.g., for refugee camp monitoring [39,40] or damage assessment [41].
A comprehensive review of research and applications in this field (pixel- as well as object-based
analyses) can be found in [42]. An open and transparent approach is specifically advantageous in
human rights fact-finding because non-profit organizations face budget restrictions and because
transparency is crucial when using complex techniques in a politically sensitive environment [43].

The following section describes the image analysis workflow, how it is implemented with FOSS
and how it is made reproducible (Section 2). Section 3 explains the execution of the packaged analysis.
Finally, we discuss the solution and the challenges (Section 4), and conclude with a summary and

42

Remote Sens. 2017, 3, 290 4 of 24

outlook in Section 5. This paper is an extended version of our contribution to the GEOBIA 2016
conference [44].

2. Materials and Methods

2.1. Data

Two images of a village in Darfur, Sudan, are our example data. They are available online as
part of a blog post by the American Association for the Advancement of Science (AAAS) Geospatial
Technologies Project [45]. The copyright holder DigitalGlobe granted permission to re-publish them as
part of this work. The images are previews of remote sensing imagery of the village Jonjona, located at
13.686◦N, 24.979◦E, before (December 2004) and after (February 2007) reported attacks in the area (see
Figure 1). They were downloaded from the website in jpg format, manually georeferenced (entering
coordinates retrieved from georeferenced imagery), resampled to a spatial resolution of 0.5 metres
(nearest neighbour resampling), and saved as GeoTIFF files. The spatial resolution approximates the
one of current commercial very high resolution satellites.

0 50 100 150 200 m

Figure 1. Example image of a village in Darfur (location: 13.686◦N, 24.979◦E) before (December 2004,
top) and after (February 2007, bottom) a reported attack. Images c© 2016 DigitalGlobe.

2.2. Example Analysis: Conflict Damage Assessment

2.2.1. Summary

The analysis model applies a rule-based approach to investigate bi-temporal images at two
different scales represented by different image object levels. It demonstrates image interpretation
using object-based features (e.g., shape, topological and hierarchical relations) using FOSS and is a

43

Remote Sens. 2017, 3, 290 5 of 24

simplified version of the method described in [38]. In the first stage, the imagery is automatically
searched for areas where settlements exist in the pre-conflict image (see Section 2.2.2). In the second
stage, the change analysis is conducted on a finer segmentation level (see Section 2.2.3) within detected
settlement areas. In these areas, the model identifies changed dwelling structures using relative change
values, as well as shape and size. As demonstrated in [38], this approach facilitates the application
in complex analyses of images with varying properties (such as sensor configurations, illumination
conditions), especially when spectral features are investigated. Figure 2 shows an overview of the
analysis workflow.

Detect settlement areas:
- Segmentation (chessboard)
- Detect seeds
- Grow and merge seeds
- Define settlement areas

settlement 2 settlement 1 settlement n

Change analysis :
- Segmentation (watershed)
- Automatically determine local reference values for settlements 1…n
- Individually identify changed objects in settlements 1…n
- Extract dwelling structures from changed objects

…

Detect settlement areas:
• Standard deviations of edge

layer
• Proximity of seed objects to

each other
• Area (size) of settlement area

Change analysis:
• Existence of settlement (super-

object)
• Difference in edge intensity of

pre- and post-conflict layers (in
relation to local reference)

• Area (size)
• Shape Index
• Ratio unfiltered/filtered pre-

conflict layer (morph. closing)

Workflow

Input images

Classification features

PCA Morph. closing Edge detection

Figure 2. Overview of the example analysis workflow. It shows the key analysis steps on the left and
the applied features for the object-based change detection and classification on the right. The first row
shows the input images and image processing results created in the first step of the workflow and used
as input for the object-based analysis in the subsequent steps (modified after [38]).

2.2.2. Detect Settlement Areas

First, a Principal Component Analysis (PCA) is applied to each file in order to compress the
highly redundant spectral information of the three RGB bands to one dimension, the first principal
component. The results are then used as pre- and post-conflict layers of a bi-temporal dataset. The
detection of settlement areas is performed on a chessboard segmentation level with a 25-m side length.
The segments are analyzed regarding the edge intensity of the pre-conflict image since edge detection
has proven to be an effective means for the identification and analysis of diverse anthropogenic
structures [46–48]. In this example, the edge intensity is determined using an edge detection algorithm
after [49]. Segments are analyzed regarding the standard deviation of the edge layer values within each
segment. The standard deviation is a good measure to identify anthropogenic structures on this coarse
image object level because it accounts for the intensity of edges of those structures in contrast to the
background. In addition to the edge intensity, the proximity of segments possibly covering settlement
structures (candidate segments) to each other is taken into account. This reflects the specific structure
of the sparsely developed villages in Darfur. While dwelling units within these villages are not directly
connected, they usually do exist in certain proximity to each other. An area is therefore considered
a settlement if it is composed of candidate segments that occur in a certain proximity (≤100 m) to

44

Remote Sens. 2017, 3, 290 6 of 24

each other. Those segments are grown and merged into a coherent settlement area. Single candidate
segments without proximity to others are ignored.

The threshold for the standard deviation of the edge layer within each segment is a predefined
value that can be tuned by the user (see Section 3.2). In addition, a minimum size of a settlement area
can be defined to focus the analysis on larger settlements.

2.2.3. Change Analysis within Settlement Areas

The analysis model segments the pre-conflict layer and analyzes the resulting image objects
regarding their change values derived from the pre- and post-conflict temporal layers. This exemplary
method is an “Image-object overlay”, following the categorization by [50]. The workflow can be
divided into three major steps: (i) feature extraction and segmentation; (ii) change analysis; and
(iii) extraction of dwelling objects from changed objects.

In the first step, image objects are created using a watershed segmentation algorithm, which
is based on the identification of local extrema [51]. The segmentation is hampered by the specific
structural properties of the objects of interest. The buildings are often directly attached to fences or
walls, so they poorly separate from the background. Earlier studies in similar areas showed that the
mathematical morphology can eliminate such interfering features [37,52]. Therefore, a morphological
closing operator with a disc-shaped structural element of a 3-pixel radius precedes the segmentation
to smooth out small and linear features.

In the second step, the objects are analyzed for structural differences between the pre- and
post-conflict layer. The analysis focuses on the change of edges because the spectral information in the
example images is limited. The change is calculated as the difference in mean edge density per object.

To extract possibly changed objects regarding this change attribute, the applied method does
not use absolute values, but instead, detects these objects using a local reference value. Hierarchical
relations, using settlement areas as super-objects, allow one to analyze changes of sub-objects with
regard to the distribution of the change values of all other sub-objects in the same settlement (e.g.,
using the mean, minimum or maximum change value). In our example, we compute a “mode value”.
It represents the most abundant degree of change in the corresponding settlement and is used as a
reference. To calculate this reference, the value range of the change feature of all objects within a
settlement area is divided into equal intervals. Each object is then classified into its corresponding
value range interval. The interval covering the largest area is chosen as the reference interval. The mean
change feature value of the objects within the reference interval is defined as the reference value within
the corresponding village. All objects are investigated by the difference between their change and the
local reference value (for more details, please refer to [38]).

We apply two methods to analyze the objects based on this difference: a thresholding and a
k-means cluster analysis. The thresholding defines a minimum value and determines the method’s
sensitivity to change. The threshold can be tuned manually, and its default value is 0.3. Disappeared
objects are detected based on this threshold. The cluster analysis isolates disappeared dwellings in the
cluster of highest difference. Its result is not used in the detection of disappeared objects, but provided
for manual inspection (see Section 2.2.4).

In the third step, the disappeared objects are investigated regarding their extent, shape and values
in the pre-conflict morphological closing layer in relation to the unfiltered layer, i.e., regarding the
impact of the closing operator (see Figure A1). The step distinguishes between changed dwelling
structures and other, similarly changed objects (e.g., fences). The shape of objects is computed using
the shape index [53,54]. It measures how well an object approximates a circle. The more the shape
differs from a circle, the higher the shape index value.

The impact of the morphological closing filter on the objects grey scale values is determined to
identify features that do not fit the structural element (e.g., small and linear structures), but have
similar shape attributes after applying segmentation on the filtered image. This is done by calculating
the ratio of the standard deviation values (per object) of the unfiltered pre-conflict layer to those after

45

Remote Sens. 2017, 3, 290 7 of 24

filtering. For the shape and size attributes, fixed thresholds are applied to extract objects of interest,
i.e., huts and sheds. More details on the object properties and thresholds used in the example analysis
can be found in Table A1.

2.2.4. Analysis Output

The workflow produces three outputs (see Figure 3): (i) the main output: a point shapefile with
centroids of dwelling objects detected as disappeared; (ii) a polygon shapefile of settlement areas
(see Section 2.2.2); and (iii) a supplementary shapefile for understanding the change detection result.
It contains polygons of all objects (changed and unchanged) without the thresholding of the second
step. The polygon attributes include among others the change cluster (resulting from the unsupervised
clustering), as well as the computed change feature for each polygon. They can be used to refine the
analysis workflow, e.g., by adapting thresholds. Figure 4 shows outputs (i) disappeared dwellings
(resulting from a change sensitivity of 0.33) and (ii) the settlement area (resulting from a settlement
detection sensitivity of 0.3). The result well reflects the overall pattern of destruction showing hot
spots in the central and southwestern parts of the village. The accuracy is of course impacted by the
limited quality and information content of the preview images used as example data. Fifty nine objects
were detected as destructed dwelling structures (huts or sheds); 36 of them could be confirmed by
visual inspection. Most of the false positives were caused by trees (no infrared channel) and certain
configurations of disappeared fences with similar object properties. In addition, we found 20 possibly
destructed structures that were not detected by the algorithm.

2.3. Implementation and Packaging of QGIS-Based Workflow

2.3.1. Development in the QGIS Modeler

QGIS is a FOSS GIS [55]. Its processing framework [56] provides access to native QGIS algorithms,
as well as a huge number of geoprocessing capabilities of third-party applications, such as GRASS
GIS, Orfeo ToolBox, SAGA GIS or R. In addition, user-created algorithms written in Python [57] and
consequently the features of any Python library can be added. Analyses can be built using a graphical
modeler and are saved as model files. These models can then be run on a selected set of inputs (e.g.,
layers in the QGIS desktop application) and user-defined parameters.

In our example, the image processing (PCA including subsequent rescaling, morphological
closing, edge detection) and segmentation steps are conducted using the algorithms of the Orfeo
ToolBox (OTB). OTB is an open-source C++ library for remote sensing and provides a substantial
set of image processing tools, including feature extraction, filtering, classification and segmentation
algorithms [58]. The segmentation using the OTB process initially creates polygons without any
object-specific properties. Therefore, we use native QGIS algorithms to compute image layer value
statistics for each of these objects (e.g., mean values regarding edge intensity). Other native algorithms
are used for example to perform calculations on object feature values, to extract objects by thresholds
or to identify centroids of polygons for the output of results. To compute shape and size properties of
objects, the SAGA GIS algorithm polygon shape indices is used [59]. Another SAGA algorithm called
identity is applied to establish hierarchical relations: for each object on the level of single buildings
(defined as sub-objects), this process identifies the object on the level of settlements (super-objects) in
which it is contained. The IDs of these super-objects are saved as attributes of the sub-objects.

46

Remote Sens. 2017, 3, 290 8 of 24

OTB:
- principal component analysis
- edge detection
- mathematical morphology
- segmentation

SAGA:
- compute shape attributes
- identify super-objects

Python scripts:
- compute difference to

local reference
- perform cluster analysis

QGIS:
- compute layer values/statistics

per object
- compute differences and ratios
- extract objects by attributes
- compute centroids

Settlement detection
(imported model)

Input imagesInput thresholds

Output shapefiles

Figure 3. Screenshot of the QGIS graphical workflow modeler showing the example change analysis.
Two input images and three numerical parameters are shown in purple boxes at the top. The inputs,
processing steps and outputs are connected by grey arcs and roughly ordered from top to bottom. The
analysis steps are based on four libraries highlighted by the colored boxes: OTB (red), QGIS (green),
SAGA GIS (blue) and Python (yellow). A detailed view of the sub-model detect settlements (grey,
left hand side) is in Figure A2. At the bottom, the three output shapefiles are shown in turquoise boxes.

47

Remote Sens. 2017, 3, 290 9 of 24

0 50 100 150 200 m

Figure 4. Post-conflict image (location: 13.686◦N, 24.979◦E) with two results of the example analysis.
The detected settlement area is the yellow polygon. The results of the damage assessment, i.e.,
the disappeared dwellings, are the red circles (image c© 2016 DigitalGlobe).

To calculate each sub-object’s difference in change to their local reference values (see Section 2.2.3),
we developed a Python script. The script uses the super-object IDs to determine sub-objects within the
same settlement area and computes the local reference within each settlement individually. It then
calculates the difference of each sub-object to the corresponding local reference. For the unsupervised
clustering, another Python script was developed because the required algorithm is not available in the
QGIS modeler. It reads attribute values of image objects from shapefiles and performs unsupervised
clustering of those attributes using the k-means algorithm from the SciPy library [60].

Using the graphical modeler, all processes were combined and saved as a model, which only
needs the pre- and post-conflict images as input. Optionally, the thresholds for the settlement detection
and the change analysis can be defined (otherwise, the model uses default values). It returns three
shapefiles of the three results explained in Section 2.2 as output. Figure 3 shows a screenshot of the
modeler view of the change analysis, with annotations of analysis steps and used software packages.
A detailed list of all FOSS packages and algorithms used, as well as their function within the workflow
can be found in Table A2.

2.3.2. Workspace Preparation

The user workspace comprises the directories and files shown in Listing 1. They are stored
in a specific directory structure, so that the model executor can find them. The contents of the
workspace are:

• a subdirectory data with the two georeferenced data files in TIFF format
• a Python script file, model.py, calling the actual model using the QGIS Python API (Application

Programming Interface, based on [61])
• analogous to the QGIS models and scripts directories, a models and a scripts directory containing

.model (for a visual summary, see Figures 3 and A2, respectively) and Python files

48

Remote Sens. 2017, 3, 290 10 of 24

Listing 1: Excerpt of workspace directory tree; the full workspace is available on GitHub [62] and in
the reproducibility package, see Section 3.4.

/workspace
|-- data
| |-- COPYRIGHT
| |-- jonjona_pos_conflict_proj.tif
| ‘-- jonjona_pre_conflict_proj.tif
|-- model.py
|-- models
| |-- detect_settlements_on_edgelayer.model
| ‘-- example_analysis_linux_v3 .1. model
‘-- scripts

|-- diff_to_local_ref_v1 .3.py
‘-- kmeans_clustering_v2 .3.py

2.3.3. Containerization of the Workspace and Runtime Environment

The prepared workspace is packaged in an executable container using a tool originally developed
for DevOps (cf. [63]) called Docker (http://docker.io). It provides lightweight virtualization and
process separation to package an application and its dependencies, for example for scalable deployment
in cloud infrastructures. We use a Docker image to encapsulate the GEOBIA workflow with a
well-defined software environment. The image can be executed anywhere where a Docker host
environment is running, including Linux, Windows and OSX (https://docs.docker.com/engine/
installation/).

For execution, a container is started based on an image. A container can be paused, stopped
and restarted or be removed from the host. The image is built from a human- and machine-readable
definition of the complete environment called Dockerfile. This “recipe” allows a scripted definition
of Docker images, i.e., installation and configuration of contained software and files, and consequently,
a repeatable building of a runtime environment. Dockerfiles can start from scratch or a base image
and contain arbitrary textual metadata using labels. Image layering allows one to re-use well-vetted
images, for example a base image with all typical OBIA software, across projects. The data and specific
tools or configuration are added to project-specific images, which can override files and environments
of base images.

While not being intended for it, Docker is a means to ensure long-term reproducibility of
computational research, as demonstrated for example for R [64]. A Docker image suffices to capture
the data, software and runtime environment in a well-defined manner and facilitates reproducibility.
For reproduction, a user must only have the concrete project’s Docker image. It can be downloaded
from an image repository or loaded from a file.

Docker images of software used in our workflow have been published on Docker Hub (for example
Todd Stavish’s QGIS [65] and OTB [66] images; the Kartoza image for QGIS [67]), but because these
execute a GUI by default and do not provide complete control over each software’s version, we created
our own set of images to run standalone models. Our Dockerfiles are published on GitHub [62] and
the corresponding images on Docker Hub (https://hub.docker.com/r/nuest/qgis-model).

Listing 2: Excerpt from the base image Dockerfile. For brevity and illustration, environment variables
and commands are shortened.

FROM ubuntu :16.04

RUN apt -get update \
&& apt -get install -qqy --no -install -recommends gdal -bin qgis =2.8.6+ dfsg -1 build1

RUN wget http ://[..]. sourceforge.net /[..]/ saga_2 .2.0. tar.gz \
&& tar -xvzf saga*.tar.gz

RUN ./ configure && make make install

49

Remote Sens. 2017, 3, 290 11 of 24

RUN wget https ://www.orfeo -toolbox.org /[...]/OTB -5.6.1 - Linux64.run -q \
&& ./OTB -5.6.1 - Linux64.run

ENV PYTHONPATH =/usr/share/qgis/python :/usr/share/qgis/python/plugins
ENV QGIS_WORKSPACE =/ workspace
ENV QGIS_MODELFILE =/ workspace/models /*. model
ENV QGIS_MODELSCRIPT =/ workspace/model.py
ENV QGIS_RESULT =/ results
ENV QGIS_USER_MODELDIR =/root/.qgis2/processing/models

WORKDIR /qgis
COPY model.sh model.sh
RUN chmod 0755 model.sh

VOLUME $QGIS_WORKSPACE
VOLUME $QGIS_RESULT

ENTRYPOINT ["/ bin/bash", "/qgis/model.sh"]

In our specific case, the base image ubuntu/Dockerfile.xenial (see Listing 2) installs the
required software, sets environment variables and configures the container’s default command.
The installation commands rely on software packages from the Ubuntu repositories and source
installations for SAGA and OTB (SAGA is installed from the source in a specific version not available
in the repositories to solve compatibility issues with QGIS; see http://hub.qgis.org/issues/13279 for
details). Environment variables provide a single point of configuration. The default command is run
with a Bash shell (see [68]). The project Dockerfile workspace/rs-jonjona/Dockerfile (see Listing 3)
extends the base image by copying the workspace data into the container and by defining an image
label with the information about configurable workflow options.

Listing 3: Project Dockerfile.

FROM nuest/qgis -model:xenial -multimodel
COPY . /workspace
LABEL de.ifgi.qgis -model.options ’[\

[...]
{ "id": "change_analysis_threshold", \
"name": "change sensitivity", \
"value": "0.3", \
"comment ": "minimum change in edge intensity for objects

to be flagged as changed" }]’

Figure 5 shows the complete control flow in the container. Excerpts from the core files model.sh
and model.py are shown in Listings 4 and 5 respectively (using XVFB [69] for a virtual frame buffer
because the container does not have a physical display, but QGIS needs a display even if not used;
mounting the hosts physical display would be possible on desktop computers, but not in cloud
environments).

Listing 4: Excerpt from model.sh; utility code left out for brevity.

cp /workspace/models /*. model /root/. qgis2/processing/models
cp /workspace/scripts /*.py /root/.qgis2/processing/scripts
xvfb -run python /workspace/model.py

50

Remote Sens. 2017, 3, 290 12 of 24

1) docker run starts a container and executes the entry point script /qgis/model.sh using a Bash shell

2) /qgis/model.sh . . .

a) copies model and script files
from /workspace/models/* to /root/.qgis2/processing/models
from /workspace/scripts/* to /root/.qgis2/processing/sripts

b) executes model.py as a Python file with a virtual frame buffer

3) /workspace/model.py . . .

a) initiates QGIS application

b) loads manipulation parameters and construct input and output paths

c) runs the model example_analysis_linux_v3.1.model using the QGIS Python API passing
configuration parameters

4) /root/.qgis/processing/models/example_analysis_linux_v3.1.model . . .

a) executes the model steps, using user scripts from /root/.qgis/processing/scripts

b) saves the files to the result directory

5) /results holds the output files for user access

Figure 5. Control flow during an execution of the Docker container in a list of numbered steps.
Starting from the command docker run, the control flow goes through two script files, one in Bash
and one in Python, each in turn acting on other files and being configured using environment variables.
Supplementary steps such as logging or loading libraries are omitted for brevity. At the end, the output
files are available in a pre-defined directory.

Listing 5: Excerpt from model.py; command construction based on environment variables and utility
code left out for brevity.

app = QgsApplication ([], True)
QgsApplication.initQgis ()
Processing.initialize ()
import processing
processing.runalg("modeler:example_analysis_linux_v3 .1", # qgis_model_name

"/workspace/data/jonjona_pre_conflict_proj.tif", # inputimage_pre
"/workspace/data/jonjona_pos_conflict_proj.tif", # inputimage_post
0.3, # change_analysis_threshold
0.3, # settlement_threshold
0, # settlement_size
"/results/settlements.shp", # output_settlements
"/results/result_threshold.shp", # output_result_threshold
"/results/result_unclassified.shp") # output_result_unclassified

2.4. InterIMAGE-Based Analysis

InterIMAGE is another candidate for a FOSS-based OBIA workflow. It provides different
segmentation algorithms including the widely-used multiresolution segmentation [70], and operators
for calculation of attributes, such as shape, texture or topological characteristics [28]. A so-called batch
mode feature has been available since Version 1.39. It allows the automatic execution of InterIMAGE
interpretation projects, so-called semantic networks. The networks store the classes and operators to
be executed.

We were able to demonstrate running the user interface of the latest available Linux release
(1.27) in a Docker container by sharing a local X11 socket [71]. However, several issues hinder
the implementation of the use case. Firstly, the software focuses on image interpretation, and not
all required algorithms for processing the image layers (e.g., the edge detection) are available in

51

Remote Sens. 2017, 3, 290 13 of 24

the basic package. A combination with other tools is possible to add missing functionality (see,
e.g., [72,73]), but it is unclear how to achieve that in a scripted workflow. More importantly, the
latest available download for Linux is outdated (Version 1.27; see http://www.lvc.ele.puc-rio.br/
projects/interimage/download). We were not successful in compiling a later version of the source
code for Linux as part of this work due to a lack of documentation and community support (https:
//groups.google.com/forum/#!topic/interimage/924t-uZrAMs).

While Linux is currently the main operating system for both Docker containers and hosts, support
for multi-platform containers exists and is developed further (see [74] for information on Windows
containers). Linux containers can be executed in a native Docker for Windows application for recent
Windows versions with Hyper-V technology (see https://docs.docker.com/docker-for-windows/).
Therefore, Windows-based containers for InterIMAGE will be possible in the future, although the
question of licensing is not answered yet.

3. Results

3.1. Running the Container: Command Line Interface

The container can be executed on any computer with Docker. The image with the analysis is
published on Docker Hub. Only the first command shown in Listing 6 is required to run the container
and reproduce the analysis, because Docker downloads images automatically from Docker Hub. The
configuration options enable console output and name the container for later reference. The log (see
[75] for a full log) comprises all installed software and their versions, the configured parameters and
the output of the started processes.

Listing 6: Full reproduction commands: run the container from Docker Hub and extract the result.

docker run -it --name repro nuest/qgis -model:rs-jonjona
docker cp repro :/ workspace/results /tmp/repro_results

The second command copies the output of the workflow to a directory of the host computer.
Listing 7 shows the contents: a directory with a timestamp of the current execution with three shapefiles,
the actual model output. The shapefiles can now be inspected or processed further. Figure 4 shows a
visualization of the files result_threshold.shp and settlements.shp.

Listing 7: Result directory tree after execution, supplementary shapefile files, i.e., .dbf, .prj, .qpj, and
.shx, and workspace files (see previous Listing 1) not shown.

|/ result
|‘-- 20161212 -172947
| |-- result_threshold.shp
| |-- result_unclassified.shp
| |-- settlements.shp

The image can be used to apply the same analysis to another use case. Listing 8 shows the exchange
of data (mounting a different workspace) and parameter manipulation (changing the environment
variable).

Listing 8: Analysis control and data switching examples. From top to bottom: (a) mounting another
workspace; (b) mounting only input files; (c) changing model options via environment variables.

(a)
docker run -it -v /my/analysis :/ workspace nuest/qgis -model:rs -jonjona

(b)
docker run -it -v mypreconflict.tif:/ workspace/data/pre_conflict.tif

-v mypostconflict.tif:/ workspace/data/pos_conflict.tif nuest/qgis -model:rs-jonjona

(c)
docker run -it -e change_analysis_threshold =0.28 nuest/qgis -model:rs-jonjona

52

Remote Sens. 2017, 3, 290 14 of 24

3.2. Running the Container: Graphical User Interface

As mentioned in Section 1.4, the transferability of rule sets and analysis models is an important
aspect in GEOBIA, but some parameters usually need to be adapted to tune an analysis method to
a specific study area. In terms of practical application of GEOBIA, a flexible parameterization of
analysis workflows by the users must be possible after containerization. Input data need to be easily
interchangeable to enable the transfer of a reproducible analysis method to the study area at hand.

To reconcile the issues of reproducibility of and interaction with OBIA workflows, we extended
Kitematic (https://kitematic.com/), a FOSS project for managing and running Docker containers with
a GUI, with model control functions. We forked the project (https://github.com/nuest/kitematic/
tree/model-ui) and added a simple form for controlling the options of workflows (see Figure 6),
which hides the complexity of manipulation using environment variables. Instead, the user configures
settings (i.e., images to compute the analysis on or thresholds used in the workflow) through fields
and buttons. The container’s full output log is also readily available.

Figure 6. Screenshot of extended Kitematic software. The left-hand side lists locally available containers
and the currently-selected one is highlighted in blue. At the top, buttons control the container state.
Two nested levels of tabs show information on and allow configuration of the selected container.
The tab “model” is active and was developed as part of this work. Its contents in the central area of the
UI provide a form-based user interface for controlling parameterized GEOBIA workflows. The list of
model options (bottom) shows the option name, current value and default value. A pop-up displays
an information text for the third option as the cursor hovers over that line. A "Save and run" button at
the bottom can be used to restart the analysis with the changed parameters.

Users can access the result files by mapping the volume where the container stores the results to a
directory on the host. Another volume allows one to exchange the whole workspace, i.e., input data
and model. Hence, the graphical user interface allows the same level or manipulation as command
line options.

3.3. Running InterIMAGE inside Container

Figure 7 shows a screenshot of the InterIMAGE GUI running inside the container. As stated above,
it was not possible to run a fully-automated workflow by use of a script as in Section 2.3. Instead,

53

Remote Sens. 2017, 3, 290 15 of 24

this example shows a different level of integration, which is to run the user interface of the software
inside a container without triggering any predefined models. This provides the users with the full
capabilities of that software for building their own analyses without the need to recreate the complete
runtime environment.

Figure 7. Screenshot of InterIMAGEUI. The software was started with a shared X server
using the command xhost + && docker run -it –rm -v /tmp/.X11-unix:/tmp/.X11-unix
-e DISPLAY=unix$DISPLAY -e uid=$(id -u) -e gi d=$(id -g) -v /data:/data
nuest/docker-interimage:1.27 ./interimage. The command mounts the display and configures
the user within the container to be the same as the executing user. It also mounts a data directory
containing the workspace, of which one input image is displayed in the central area of the UI.

3.4. Reproducibility Package

In the spirit of reproducibility and being well-aware of the ephemeral nature of online platforms
such as GitHub or Docker Hub, we provide a comprehensive reproducibility package with this work.
It contains software, data, Docker images and Dockerfiles, documentation of how it was created and
instructions on how to run it. It is published at Zenodo, a repository for long-term preservation [75].
The software comprises a current version of Docker and the developed software. Both are included as
installers for common operating systems and as source code.

3.5. Reproducible GEOBIA

Three observations can be made for reproducibility in the GEOBIA domain. First, the existing
reproducibility spectrum [13] does not represent typical GEOBIA analyzes well because of the limited
availability of open data and the dominance of a single commercial software. Since many researchers
in the domain actually have access to a de facto standard software, most of them could reproduce an
open workspace, although the software is not FOSS. Consequently open-sourcing of the workspace
could be distinguished from open-sourcing the used software.

Second, acquisition of remote sensing data is costly, and often, there are no free suitable
alternatives. Consequently, one could accept data not being open, because it is readily available
for anyone having the financial resources.

Third, no specific guidelines for authors of (GE)OBIA papers exist comparable to the examples
from other domains (see Section 1.2). Such guidelines can comprise the aspects documentation,
scripted workflows, best practices for project structures, freeware (free as in “free beer”; see [76]) and

54

Remote Sens. 2017, 3, 290 16 of 24

FOSS and open data. The former two are already common, yet the latter could have a high impact on
reproducibility and practical adoption.

4. Discussion

We successfully demonstrate packaging a complete GEOBIA workflow using FOSS. The package
created is transferable between machines (different host operating systems, as well as desktop and
cloud platforms), and all tools are available free of charge. This is the first time environment variables
and Docker image labels are used to parameterize a scientific workflow with a GUI. Our experiments
show that containerization is useful not only for reproducibility by third parties, but also for the
original development of a FOSS-based analysis, because of the numerous tools involved in different
versions and potential conflicts between them. The customized user interface removes barriers for
practitioners with limited computer science experience. However, this only concerns the use of a
containerized method. For authors of new methods, the creation of a container requires knowledge in
the area of Docker and the QGIS Python API.

A Docker container is not a black box, since each applied software is documented in detail in
the Docker file. The presented solution also allows one to customize a method by changing input
parameters and data. In our example, we only enable three parameters to be manipulated, but the
approach can accommodate any number of additional variables (e.g., segmentation parameters). It
is also possible to develop more complex containers allowing users to choose different algorithms.
We thereby present a means to technically reconcile the conflicting priorities of customizability and
reproducibility. However, the conceptual question on the desired degree of customizability, i.e., to
what extent the target group of practitioners is expected to redevelop a methodology provided by an
expert, remains open and strongly depends on the specific use case.

Our work also reveals challenges with regard to the overarching goal of reproducible research.
The presented solution is arguably a one-off effort to containerize a specific workflow and does not
require any standardization beyond the docker run command. Yet, only an experienced developer
can trace the complete flow of information, from the Docker entry point via used scripts to the actually
executed code and used parameters, to grasp the complete picture. The user scripts and analysis model
are embedded in the container, and extracting them requires the container to be started. This could
be a barrier for users and for the purposes of development and exploration, but a copy could be kept
outside the image or be made available by reproducibility tools. Keeping a copy outside the image
naturally leads to a nested packaging approach.

The selection of Docker as the container engine makes it crucial for both reproduction and
archiving. This dependency on a specific product is mitigated by Docker being open-source and highly
adopted in the IT industry. An open standardization effort also is underway: the Open Container
Initiative (https://www.opencontainers.org/). This effort contributes to a proper long-term archiving
solution because the runtime environment must be preserved, and archiving cannot rely solely on the
Dockerfile without replicating all source repositories or download sites. Layers of images, i.e., base
images and an analysis image, make it possible to easily store, share, adopt and collaborate on complex
analyses because they can be shared or extended further. However, they also increase complexity.

The approach for UI-based GEOBIA within containers (see Section 3.3) using the current tools is
only possible on Unix-based operating systems. Interactive interfaces for containerized workflows are
possible in an OS-independent manner by developing the whole analysis within a container, which
provides a user interface via HTTP and HTML to a regular web browser (cf. [77]). The advantages
are complete and consistent containers and immediate visual access to results. However, we suspect
that most users prefer to develop an analysis in the environment they are used to and only package a
complete analysis.

Besides the technical challenges, best practices for reproducible research could provide a
meaningful yet generic workspace structure and enforce general practices, such as managing scripts
in a version control system [78]. Such practices could be implemented in a standardized format

55

Remote Sens. 2017, 3, 290 17 of 24

for container-based reproducibility packages, be supported by ready-to-use templates and even be
partially automated for example with an “export to container”-button in the QGIS workflow modeler
to generate a Dockerfile. The presented solution can accommodate such best practices. The formal
specification of a container format and supporting services for semi-automatic creation are subject of
current research and can mitigate the above-mentioned knowledge requirements for the authors of
methods (cf. [79]).

The availability of open data remains a general issue. Especially in GEOBIA, where very high
resolution imagery plays an important role in many analyses, the applied images are often not freely
available. In these cases, it is not possible to publish the data along with the analysis workflow
and software. On the other hand, GEOBIA is a widely-used tool in the rapidly-growing field of
analyzing very high-resolution data, e.g., from unmanned aerial systems (UAS). Here, scientists
become producers of their own image data. This makes an approach as presented here especially useful
because the studied images can be published and at the same time become an essential requirement
for full reproducibility due to their uniqueness.

The FOSS solutions applied in the containerized workflow, at the current stage, cannot compete
with commercial software packages, such as eCognition, regarding functionality and data models for
GEOBIA. The available functions of FOSS tools already provide a substantial set of algorithms, and
the analysis is created with a user-friendly interactive modeler in a Desktop environment. However,
the number of actual OBIA operations for image interpretation is limited. Our example analysis shows
that many aspects of GEOBIA can already be realized, e.g., by a combination of algorithms and tailored
scripts. However, more complex models, including iterative sequences of segmentation, merging and
interpretation of objects (e.g., for a better extraction of relevant dwelling structures, cf. [46,80]) are still
difficult to develop in FOSS. However, since FOSS tools are easily extensible, the missing functionality
can be contributed as new functions or independent tools.

5. Conclusions

Docker containers and a combination of established free and open-source GIS and image analysis
software enable reproducible GEOBIA. We build and distribute a container to carry all required
software and data in a transparent manner. The provided user interface makes the package easy
to use. This is a breakthrough for creating a transferable and executable package of a GEOBIA
workflow. The presented analysis goes well beyond simple processing by successfully integrating
tools into a complex multi-step analysis. Packaging GEOBIA software and workflows opens new
possibilities for reviews of scientific work, collaboration between researchers and adoption by
practitioners. The example analysis in conflict damage assessment presents an application field
where transparency and cost are important factors, so that an open approach is advantageous.
The shortcomings with respect to the reproducibility of analyses are mostly related to usability. To reach
a comprehensive feature set, high user-friendliness and subsequently practical adoption, a community
of GEOBIA users applying and contributing to open-source technologies is needed. Although there
are commonalities across all scientific disciplines, domain-specific requirements demand: (i) targeted
education; (ii) high-quality specialized FOSS; and (iii) best practices. The challenge starts with an open
discourse on reproducible research and a working definition of reproducibility specifically for GEOBIA
(cf. [81]), to which this work intends to be a first step.

Acknowledgments: This research has been conducted in the context of the Graduate School for Geoinformatics
(http://www.uni-muenster.de/Geoinformatics/en/Studies/study_programs/PhD/). It has partly been
supported by the project Opening Reproducible Research (http://o2r.info and https://www.uni-muenster.
de/forschungaz/project/9520) funded by the German Research Foundation (DFG) under Project Number PE
1632/10-1. We thank Edzer Pebesma for valuable comments and support.

Author Contributions: Both authors contributed equally to the paper. Christian Knoth conceived the study and
developed the analysis workflow and its FOSS-based implementation. Daniel Nüst performed the containerization
of the workflow and runtime environment and implemented the user interface for the interaction with the
containerized workflow.

56

Remote Sens. 2017, 3, 290 18 of 24

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
GIS Geographic Information System
GEOBIA Geographic Object-Based Image Analysis
OBIA Object-Based Image Analysis
FOSS Free and Open-Source Software
LULC Land Use and Land Cover
LIDAR Light Detection and Ranging
GUI Graphical User Interface
AAAS American Association for the Advancement of Science
PCA Principal Component Analysis
OTB Orfeo ToolBox
SAGA System for Automated Geoscientific Analyses
API Application Programming Interface
XVFB X Window Virtual Frame Buffer
UAS Unmanned Aerial Systems
HTTP Hypertext Transfer Protocol
HTML Hypertext Markup Language

Appendix A

Table A1. List of properties used in the settlement detection and the subsequent detection of
disappeared structures (within detected settlement areas) along with the corresponding rules and
recommended thresholds.

Object Property Rule or Threshold Analysis Step

Standard deviation of edge layer (pre-conflict) of seed segments ≥ 0.3 Settlement detection

Proximity of seed segments to each other ≤ 100 m Settlement detection

Number of seed segments (per settlement) ≥ 2 Settlement detection

Optionally: Size of settlement area (after merging of seeds) ≥ 0 (no default threshold set in this example) Settlement detection

Existence of super-object of class settlement True (super-object ID > 0) Change analysis

Change of edge intensity Difference to local reference value ≥ 0.33 Change analysis

Minimum size (area) 10 m2 Change analysis

Maximum size (area) 60 m2 Change analysis

Shape Index value ≤ 1.55 Change analysis

Impact of morphological closing (ratio of standard deviation of pre-conflict
layer values per object before and after morphological closing)

≤ 5.5 Change analysis

57

Remote Sens. 2017, 3, 290 19 of 24

Table A2. Summary of the QGIS-based analysis workflow showing the processing steps and the corresponding algorithms (Python: the scripts written in Python; see
Section 2.3.1).

Analysis Step Algorithm Stage of Workflow

Extract first principal component of pre- and post-conflict image OTB:DimensionalityReduction (pca) Image processing

Rescale both principal components to 8bit OTB:Rescale Image Image processing

Edge detection on both layers OTB:EdgeExtraction (touzi) Image processing

Morphological closing on pre-conflict layer OTB:GrayScaleMorphologicalOperation
(closing)

Image processing

Determine extent of raster layer QGIS:Raster layer bounds Settlement detection

Create chessboard segmentation within extent QGIS:Create grid Settlement detection

Compute standard deviation of edge layer within segments QGIS:Zonal statistics Settlement detection

Extract settlement candidate segments according to standard deviation of edge layer QGIS:Extract by attribute Settlement detection

Create settlement area objects by growing and merging candidate segments that are within proximity (100 m max) to each
other (ignore isolated candidates)

QGIS: Fixed distance buffer
QGIS:Multipart to singleparts
SAGA:Polygon shape indices
QGIS:Extract by attribute
QGIS:Fill holes

Settlement detection

Create IDs in attribute table and specify field name QGIS:Add autoincremental field
QGIS:Refactor fields

Settlement detection

Create objects on level of single huts OTB:Segmentation (watershed) Change analysis

Compute mean of edge intensity within objects (pre- and post-conflict) QGIS:Zonal statistics Change analysis

Calculate difference in mean edge density between pre- and post-conflict (check for NULL) QGIS:Adv. Python Field Calculator
QGIS:Extract by attribute

Change analysis

Compute shape and size properties of objects SAGA:Polygon shape indices Change analysis

For all sub-objects, get IDs of containing super-objects (settlements) SAGA:Identity Change analysis

Compute local reference (of change) within settlements and difference of sub-objects to this reference Python:Difference to local reference v1.3 Change analysis

Compute unsupervised clustering regarding change Python:Kmeans clustering v2.3 Change analysis

Extract objects by minimum and maximum size QGIS:Extract by attribute Change analysis

Extract objects by their shape index QGIS:Extract by attribute Change analysis

Compute statistics of pre-conflict layer per object before and after morphological closing QGIS:Zonal statistics Change analysis

Calculate ratio of sdev. values of pre-conflict layer before and after morphological closing QGIS:Refactor fields Change analysis

Extract objects by ratio value QGIS:Extract by attribute Change analysis

Extract objects by change value (difference in mean edge density) using pre-defined threshold QGIS:Extract by attribute Change analysis

Compute centroids of objects extracted by threshold and within settlements QGIS:Polygon centroids
QGIS:Extract by attribute

Change analysis

58

Remote Sens. 2017, 3, 290 20 of 24

0 10 20 m

sdev ~ 53 sdev ~ 38 sdev ~ 22sdev ~ 4

Figure A1. Subset of the pre-conflict layer before (left image) and after (right image) morphological
closing. It shows the effect of the filter on a dwelling object (right object) and a fence (left object).
The higher impact of the filter on small, linear structures is used as an additional feature to remove them
by measuring the ratio of the standard deviation per object of the unfiltered to that of the filtered layer.

Input Image
(pre-conflict edge layer)Input thresholds

Output shapefile

QGIS:
- create chessboard with extent

of image layer
- compute object features
- extract by attributes
- grow and merge seed segments
- extract settlements by size
- assign ID to settlements

SAGA GIS:
- Determine settlement extent

Figure A2. Screen-shot of analysis workflow in the QGIS graphical modeler with highlighting.
Three inputs, two numerical thresholds and the pre-conflict edge layer are shown in purple at the
top. The analysis steps are connected with grey arcs and executed from top to bottom. They are based
on QGIS (green boxes) and SAGA GIS (dark blue box). This model is applied as one algorithm in
the analysis workflow depicted in Figure 3. The model output is a single shape file with detected
settlements, shown in turquoise at the bottom.

59

Remote Sens. 2017, 3, 290 21 of 24

References

1. Bailey, C.W. What Is Open Access? Available online: http://digital-scholarship.org/cwb/WhatIsOA.htm
(accessed on 19 December 2016).

2. European Commission Horizon 2020 Open Science (Open Access). Available online: https://ec.europa.eu/
programmes/horizon2020/en/h2020-section/open-science-open-access (accessed on 19 December 2016).

3. The Commission High Level Expert Group on the European Open Science Cloud. Realising the European
Open Science Cloud; European Commission: Brussels, Belgium, 2016.

4. Nosek, B.A.; Alter, G.; Banks, G.C.; Borsboom, D.; Bowman, S.D.; Breckler, S.J.; Buck, S.; Chambers, C.D.;
Chin, G.; Christensen, G.; et al. Promoting an open research culture. Science 2015, 348, 1422–1425.

5. Peng, R.D. Reproducible research and Biostatistics. Biostatistics 2009, 10, 405–408.
6. Markowetz, F. Five selfish reasons to work reproducibly. Genome Biol. 2015, 16, 274.
7. Kraker, P.; Dörler, D.; Ferus, A.; Gutounig, R.; Heigl, F.; Kaier, C.; Rieck, K.; Šimukovič, E.; Vignoli, M.;

Aspöck, E.; et al. The Vienna Principles: A Vision for Scholarly Communication in the 21st Century.
Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare 2016, 3, 436–446.

8. Sandve, G.K.; Nekrutenko, A.; Taylor, J.; Hovig, E. Ten Simple Rules for Reproducible Computational
Research. PLoS Comput. Biol. 2013, 9, e1003285.

9. Gentleman, R.; Temple Lang, D. Statistical Analyses and Reproducible Research. J. Comput. Graph. Stat.
2007, 16, 1–23.

10. Goodman, S.N.; Fanelli, D.; Ioannidis, J.P.A. What does research reproducibility mean? Sci. Transl. Med.
2016, 8, 341ps12.

11. Amitrano, D.; Di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. A New Framework for SAR Multitemporal
Data RGB Representation: Rationale and Products. IEEE Trans. Geosci. Remote Sens. 2015, 53, 117–133.

12. Howe, B. Virtual Appliances, Cloud Computing, and Reproducible Research. Comput. Sci. Eng. 2012,
14, 36–41.

13. Peng, R.D. Reproducible Research in Computational Science. Science 2011, 334, 1226–1227.
14. Lucieer, V.; Hill, N.A.; Barrett, N.S.; Nichol, S. Do marine substrates ‘look’ and ‘sound’ the same? Supervised

classification of multibeam acoustic data using autonomous underwater vehicle images. Estuar. Coast.
Shelf Sci. 2013, 117, 94–106.

15. Dupuy, S.; Barbe, E.; Balestrat, M. An Object-Based Image Analysis Method for Monitoring Land Conversion
by Artificial Sprawl Use of RapidEye and IRS Data. Remote Sens. 2012, 4, 404–423.

16. Tormos, T.; Dupuy, S.; Van Looy, K.; Barbe, E.; Kosuth, P. An OBIA for fine-scale land cover spatial analysis
over broad territories: Demonstration through riparian corridor and artificial sprawl studies in France. In
Proceedings of the GEOBIA 2012: 4th International Conference on GEographic Object-Based Image Analysis,
Rio de Janeiro, Brazil, 7–9 May 2012.

17. Stodden, V.; Miguez, S.; Seiler, J. ResearchCompendia.org: Cyberinfrastructure for Reproducibility and
Collaboration in Computational Science. Comput. Sci. Eng. 2015, 17, 12–19.

18. Bechhofer, S.; Buchan, I.; De Roure, D.; Missier, P.; Ainsworth, J.; Bhagat, J.; Couch, P.; Cruickshank, D.;
Delderfield, M.; Dunlop, I.; et al. Why linked data is not enough for scientists. Future Gen. Comput. Syst.
2013, 29, 599–611.

19. Chirigati, F.; Rampin, R.; Shasha, D.; Freire, J. ReproZip: Computational Reproducibility With Ease. In
Proceedings of the SIGMOD 2016 International Conference on Management of Data, San Francisco, CA,
USA, 26 June–1 July 2016.

20. Douglas T.; Haiyan Meng, P. Techniques for Preserving Scientific Software Executions: Preserve the Mess or
Encourage Cleanliness? In Proceedings of the 12th International Conference on Digital Preservation (iPres)
2015, Chapel Hill, NC, USA, 2–6 November 2016.

21. Open Source Initiative. Open Source Case for Business:Advocacy. Available online: https://opensource.
org/advocacy/case_for_business.php (accessed on 19 December 2016).

22. Wightman, T.. What’s keeping you from using open source software?. Available online: https://opensource.
com/business/13/12/using-open-source-software (accessed on 19 December 2016).

23. Salus, P. A Quarter-Century of Unix; Addison-Wesley: Boston, MA, USA, 1994; pp. 52–53.

60

Remote Sens. 2017, 3, 290 22 of 24

24. Grippa, T.; Lennert, M.; Beaumont, B.; Vanhuysse, S.; Stephenne, N.; Wolff, E. An Open-Source
Semi-Automated Processing Chain for Urban OBIA Classification. In Proceedings of the GEOBIA 2016:
Solutions & Synergies, Enschede, The Netherlands, 14–16 September 2016.

25. Böck, S.; Immitzer, M.; Atzberger, C. Automated Segmentation Parameter Selection and Classification of
Urban Scenes Using Open-Source Software. In Proceedings of the GEOBIA 2016: Solutions & Synergies,
Enschede, The Netherlands, 14–16 September 2016.

26. Van De Kerchove, R.; Hanson, E.; Wolff, E. Comparing pixel-based and object-based classification
methodologies for mapping impervious surfaces in Wallonia using ortho-imagery and LIDAR data. In
Proceedings of the GEOBIA 2014: Advancements, Trends and Challenges, Thessaloniki, Greece, 22 May 2014.

27. Körting, T.; Fonseca, L.; Câmara, G. GeoDMA—Geographic Data Mining Analyst. Comput. Geosci. 2013,
57, 133–145.

28. Costa, G.; Feitosa, R.; Fonseca, L.; Oliveira, D.; Ferreira, R.; Castejon, E. Knowledge-based interpretation
of remote sensing data with the InterImage system: Major characteristics and recent developments.
In Proceedings of the GEOBIA 2010: Geographic Object-Based Image Analysis, Ghent, Belgium,
29 June–2 July 2010.

29. Antunes, R.; Happ, P.; Bias, E.; Brites, R.; Costa, G.; Feitosa, R. An Object-Based Image Interpretation
Application on Cloud Computing Infrastructure. In Proceedings of the GEOBIA 2016: Solutions & Synergies,
Enschede, The Netherlands, 14–16 September 2016.

30. Blaschke, T.; Hay, G.; Maggi, K.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.; van der Meer, F.; van der
Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J.
Photogramm. Remote Sens. 2014, 87, 180–191.

31. Drǎguţ, L.; Tiede, D.; Levick, S. ESP: A tool to estimate scale parameter for multiresolution image
segmentation of remotely sensed data. Int. J. Geograph. Inf. Sci. 2010, 24, 859–871.

32. Drǎguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation
on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127.

33. Martha, T.; Kerle, N.; van Westen, C. Segment Optimization and Data-Driven Thresholding for
Knowledge-Based Landslide Detection by Object-Based Image Analysis. Int. J. Geograph. Inf. Sci. 2011,
49, 4928–4943.

34. Hofmann, P. Defuzzification Strategies for Fuzzy Classifications of Remote Sensing Data. Remote Sens. 2016,
8, 467.

35. Kohli, D.; Warwadekar, P.; Kerle, N.; Sliuzas, R.; Stein, A. Transferability of Object-Oriented Image Analysis
Methods for Slum Identification. Remote Sens. 2013, 5, 4209–4228.

36. Hofmann, P.; Blaschke, T.; Strobl, J. Quantifying the robustness of fuzzy rule sets in object-based image
analysis. Int. J. Remote Sens. 2011, 32, 7359–7381.

37. Knoth, C.; Pebesma, E. Detecting destruction in conflict areas in Darfur. In Proceedings of the GEOBIA 2014:
Advancements, Trends and Challenges, Thessaloniki, Greece, 22 May 2014.

38. Knoth, C.; Pebesma, E. Detecting dwelling destruction in Darfur through object-based change analysis of
very high-resolution imagery. Int. J. Remote Sens. 2017, 38, 273–295.

39. Tiede, D.; Füreder, P.; Lang, S.; Hölbling, D.; Zeil, P. Automated Analysis of Satellite Imagery to provide
Information Products for Humanitarian Relief Operations in Refugee Camps - from Scientific Development
towards Operational Services. Photogramm. Fernerkund. Geoinf. 2013, 2013, 185–195.

40. Giada, S.; De Groeve, T.; Ehrlich, D.; Soille, P. Information extraction from very high resolution satellite
imagery over Lukole refugee camp, Tanzania. Int. J. Remote Sens. 2003, 24, 4251–4266.

41. Al-Khudhairy, D.; Caravaggi, I.; Giada, S. Structural damage assessments from Ikonos data using change
detection, Object-level Segmentation, and Classification Techniques. Photogramm. Eng. Remote Sens. 2005,
71, 825–837.

42. Witmer, F. Remote sensing of violent conflict: Eyes from above. Int. J. Remote Sens. 2015, 36, 2326–2352.
43. Wolfinbarger, S. Remote Sensing as a Tool for Human Rights Fact-Finding. In The Transformation of Human

Rights Fact-Finding; Alston, P.; Knuckey, S., Eds.; Oxford University Press: New York, NY, USA, 2016;
pp. 463–477.

44. Knoth, C.; Nüst, D. Enabling reproducible OBIA with open-source software in docker
containers. In Proceedings of the GEOBIA 2016: Solutions & Synergies, Enschede, The Netherlands,

61

Remote Sens. 2017, 3, 290 23 of 24

14–16 September 2016; Kerle, N., Gerke, M., Lefèvre, S., Eds.; University of Twente Faculty of
Geo-Information and Earth Observation (ITC): Enschede, The Netherlands, 2016.

45. American Association for the Advancement of Science Appendix A: Darfur, Sudan
and Chad Imagery Characteristics Available online: http://www.aaas.org/page/
appendix-darfur-sudan-and-chad-imagery-characteristics (accessed on 19 December 2016).

46. Lang, S.T.D.; Hölbling, D.; Füreder, P.; Zeil, P. Earth observation (EO)-based ex post assessment of internally
displaced person (IDP) camp evolution and population dynamics in Zam Zam, Darfur. Int. J. Remote Sens.
2010, 31, 5709–5731.

47. Wei, Y.; Zhao, Z.; Song, J. Urban building extraction from high-resolution satellite panchromatic image
using clustering and edge detection. In Proceedings of the 2004 IEEE International Geoscience and Remote
Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004.

48. De Kok, R.; Wezyk, P. Principles of full autonomy in image interpretation. The basic architectural
design for a sequential process with image objects. In Object-Based Image Analysis. Spatial Concepts for
Knowledge-Driven Remote Sensing Applications; Blaschke, T.; Lang, S.; Hay, G.J., Eds.; Springer: Berlin,
Germany, 2008; pp. 697–710.

49. Touzi, R.; Lopes, A.; Bousquet, P. A statistical and geometrical edge detector for SAR images. IEEE Trans.
Geosci. Remote Sens. 1988, 26, 764–773.

50. Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed
optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14.

51. OTB Development Team. The ORFEO Tool Box Software Guide. Available online: https://www.
orfeo-toolbox.org//packages/OTBSoftwareGuide.pdf (accesssed on 27 June 2016).

52. Sulik, J.; Edwards, S. Feature extraction for Darfur: Geospatial applications in the documentation of human
rights abuses. Int. J. Remote Sens. 2010, 31, 2521–2533.

53. Lang, S.; Blaschke, T. Landschaftsanalyse Mit GIS; Ulmer: Stuttgart, Germany, 2007; pp. 241–243.
54. Forman, R.; Godron, M. Landscape Ecology; Wiley: New York, NY, USA, 1986; pp. 106–108.
55. QGIS Development Team. QGIS Geographic Information System. Available online: http://qgis.osgeo.org

(accessed on 24 June 2016).
56. Graser, A.; Oyala, V. Processing: A Python Framework for the Seamless Integration of Geoprocessing Tools

in QGIS. ISPRS Int. J. Geo-Inf. 2015, 4, 2219–2245.
57. Rossum, G. Python Reference Manual. Available online: http://www.python.org/ (accessed on

19 December 2016).
58. Inglada, J.; Christophe, E. The Orfeo Toolbox remote sensing image processing software. In Proceedings of

the 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa,
12–17 July 2009.

59. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J.
System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007.

60. Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. Available online:
http://www.scipy.org/ (accessed on 27 June 2016).

61. PyQGIS Developer Cookbook Using PyQGIS in standalone scripts. Available online: http://docs.qgis.org/
testing/en/docs/pyqgis_developer_cookbook/intro.html#using-pyqgis-in-standalone-scripts (accessed
on 27 June 2016).

62. Nüst, D. Docker Container for QGIS Models on GitHub. Available online: https://github.com/nuest/
docker-qgis-model (accessed on 24 November 2016).

63. Loukides, M. What is DevOps? Infrastructure as Code; O’Reilly Media: Sebastopol, CA, USA, 2012.
64. Boettiger, C. An introduction to Docker for reproducible research, with examples from the R environment.

ACM SIGOPS Oper. Syst. Rev. 2015, 49, 71–79.
65. Stavish, T. Docker for QGIS. Available online: https://hub.docker.com/r/toddstavish/qgis (accessed on 24

November 2016).
66. Stavish, T. Docker for OTB. Available online: https://hub.docker.com/r/toddstavish/orfeo_toolbox

(accessed on 24 November 2016).
67. Sutton, T. Docker for QGIS Desktop. Available online: https://hub.docker.com/r/kartoza/qgis-desktop

(accessed on 24 November 2016).

62

Remote Sens. 2017, 3, 290 24 of 24

68. GNU-Project GNU Bash Available online: https://www.gnu.org/software/bash/ (accessed on 24 November
2016).

69. Wiggins, D.P. XVFB Documentation. Available online: https://www.x.org/releases/X11R7.6/doc/man/
man1/Xvfb.1.xhtml (accessed on 24 November 2016).

70. Baatz, M.; Schäpe, A. Multiresolution segmentation—An optimization approach for high quality multi-scale
image segmentation. In Angewandte Geographische Informations-Verarbeitung XII; Strobl, J.; Blaschke, T.;
Griesebner, G., Eds.; Wichmann: Karlsruhe, Germany, 2000; pp. 12–23.

71. Nüst, D.; Knoth, C. Docker-Interimage: Running the Latest InterIMAGE Linux Release in A Docker
Container with User Interface. Available online: http://zenodo.org/record/55083 (accessed on 6 July 2016).

72. Antunes, R.; Bias, E.; Brites, R.; Costa, G. Integration of Open-Source Tools for Object-Based Monitoring of
Urban Targets. In Proceedings of the GEOBIA 2016: Solutions & Synergies, Enschede, The Netherlands,
14–16 September 2016.

73. Passo, D.; Bias, E.; Brites, R.; Costa, G.; Antunes, R. Susceptibility mapping of linear erosion processes using
object-based analysis of VHR images. In Proceedings of the GEOBIA 2016: Solutions & Synergies, Enschede,
The Netherlands, 14–16 September 2016.

74. Friis, M. Docker on Windows Server 2016 Technical Preview 5. Available online: https://blog.docker.com/
2016/04/docker-windows-server-tp5/ (accessed on 19 December 2016)

75. Nüst, D.; Knoth, C. Data and code for: Reproducibility and Practical Adoption of GEOBIA with Open-Source
Software in Docker Containers. Available online: https://doi.org/10.5281/zenodo.168370 (accessed on
19 December 2016).

76. GNU-Project What is free software? Available online: https://www.gnu.org/philosophy/free-sw.en.html
(accessed on 24 November 2016).

77. Marwick, B. 1989-Excavation-Report-Madjebebe. Available online: https://doi.org/10.6084/m9.figshare.
1297059.v2 (accessed on 24 November 2016).

78. Ram, K. Git can facilitate greater reproducibility and increased transparency in science. Source Code Biol. Med.
2013, 8, 7.

79. Nüst, D.; Konkol, M.; Schutzeichel, M.; Pebesma, E.; Kray, C.; Przibytzin, H.; Lorenz, J. Opening the
Publication Process with Executable Research Compendia. D-Lib Mag. 2017, doi:10.1045/january2017-nuest.

80. Tiede, D.; Lang, S.; Hölbling, D.; Füreder, P. Transferability of OBIA rulesets for IDP camp analysis in
Darfur. In Proceedings of the GEOBIA 2010: Geographic Object-Based Image Analysis, Ghent, Belgium,
29 June–2 July 2010.

81. Baker, M. Muddled meanings hamper efforts to fix reproducibility crisis. Nat. News 2016,
doi:10.1038/nature.2016.20076.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

63

5 A Web service for executable researcH
compendia enables reproducible
publications and transparent reviews in
geospatial sciences

Authors & contribution Daniel Nüst

Venue Preprinted on Zenodo 10.5281/zenodo.4818120; submission planned to CiSE spe-
cial track or GigaScience

Date 07/2021

Repository https://zivgitlab.uni-muenster.de/d_nues01/architecture-paper

65

https://doi.org/10.5281/zenodo.4818120
https://www.computer.org/digital-library/magazines/cs/track-calls-for-papers#Reproducible%20Research
https://www.computer.org/digital-library/magazines/cs/track-calls-for-papers#Reproducible%20Research
https://academic.oup.com/gigascience/pages/About
https://zivgitlab.uni-muenster.de/d_nues01/architecture-paper

A Web service for executable research
compendia enables reproducible publications and
transparent reviews in geospatial sciences
 Daniel Nüsta

aInstitute for Geoinformatics (ifgi), University of Münster, Germany (daniel.nuest@uni-muenster.de)

Preprint published on Zenodo at https://doi.org/10.5281/zenodo.4818120 under CC-BY-4.0 license. This version was compiled on 2021-07-08 based on git commit d00c4205 from
the repository https://zivgitlab.uni-muenster.de/d_nues01/architecture-paper.

The Executable Research Compendium (ERC) is a concept for pack-
aging data, code, text, and user interface configurations in a single
package to increase transparency, reproducibility, and reusability of
computational research. This article introduces the ERC reproducibil-
ity service (ERS) for a publication workflow enhanced by ERCs. The
ERS connects with existing scientific infrastructures and was deployed
and tested with a focus on data and visualisation methods for open
geospatial sciences. We describe the architecture of a reference im-
plementation for the reproducibility service, including the created Web
API. We critically discuss both the project set-up and features of ERC
and ERS, and examine them in the light of various classifications for
reproducible research. The ERC and ERS are found to be a powerful
tool to improve reproducibility and thereby enable better investigating
and understanding of computational workflows during peer review. We
derive lessons learned and challenges for future scholarly publishing
of computer-based geospatial research.

reproducible research | reproducibility | open science | executable research com-

pendium | ERC | research infrastructure | research compendia | containerisation

1. Introduction

Open Science and reproducibility are enormous chal-
lenges for research, as computers and algorithms infuse
all scientific disciplines, including geography and geo-
sciences (David et al., 2016; Nüst and Pebesma, 2020),
and the scientific paper falls short in communicating the
actual scholarship (Brammer et al., 2011; Marwick, 2015;
Gil et al., 2016). The relevance of openness and repro-
ducible reusable research are undisputed, just as the prob-
lems applying them in daily work, challenges around re-
producibility, and handling in digital scholarly publishing
workflows are real (e.g., Davison, 2012; Freire et al.,
2016). Software failures have led to wrong results and
retractions (Miller, 2006; Gronenschild et al., 2012) and
“the lack of reported failures from geography and geosciences
is not reassuring” (Nüst and Pebesma, 2020). Repro-
ducibility in geospatial sciences, similar to most scien-
tific disciplines, is low (e.g., Konkol et al., 2019a; Nüst
and Pebesma, 2020; Yan et al., 2020; Nüst et al., 2018).
Although progress is made on openness in geospatial
sciences, reproducibility has not been systematically ad-
dressed and increasing requirements for publication has
just begun (Minghini et al., 2020; cf. Peng and Hicks,
2021). A continued development of infrastructure sup-
porting reproducibility is needed (Peng and Hicks, 2021).
To achieve sufficient openness and reproducibility, all as-
pects of science must be adopted with the common goal
of a culture change in mind. Only a general broad change
can support and motivate researchers shift towards good
Open Science and reproducible research practices. Exam-

ples for areas where change is needed are (a) require-
ments of funders and journals (cf. Hardwicke et al., 2018,
and Stodden et al. (2018); Nüst et al., 2018), mechanisms
to award recognition to all types of research outputs (Pi-
wowar, 2013), and (c) education and tools, so that all
stakeholders have the means, i.e., resources, time, and
knowledge, to create, examine, review, and publish re-
producible open scientific workflows. To facilitate change
on these levels, we have conceptualised and implemented
an infrastructure to lower the barriers for creating, shar-
ing, and reviewing reproducible publications. This work’s
main contribution is a detailed description of that infras-
tructure and the demonstration of it’s functionality.

We present a Web service for open and reproducible
publications for computational research in geography and
geosciences: the ERC reproducibility service (ERS). The
ERS is connected with the existing processes, services,
and platforms for scholarly publications and serves the
particular needs of geospatial data sciences. Examples
and applications are taken from these domains as well,
i.e., data-based workflows using observational data of the
Earth. The ERS focuses on the third area of cultural
change, education and tools, by putting the concept of
the Executable Research Compendium (ERC, Nüst et al.,
2017) into practice as part of the scholarly publication
process. The ERC at the centre of scholarly communica-
tion enables communicating, sharing, and collaborating
on the actual scholarship as it includes data, software, and
documentation (cf. Buckheit and Donoho, 1995; Daven-
port et al., 2020). Previous work presented the benefits
for authors and readers (Konkol et al., 2019b). Here we
describe the technical background and implementation of
the ERS, and how it provides a missing functionality in
scholarly publishing infrastructure.

In the remainder of this work, we first present related
initiatives and approaches. Then we introduce a techni-
cal specification for the ERC followed by an architecture
and reference implementation for a Web service for ERC
creation and examination, which is connected with the ex-
isting landscape of scholarly publication infrastructures.
Finally, we discuss limitations and lessons learned, and
conclude with a summary and an outlook on future work.

2. Related work

Containerisation is widely adopted as a technology to
capture computing environments around computational
workflows in general (Boettiger, 2015), but also more
specifically for academic papers (Liu and Salganik, 2019)

https://doi.org/10.5281/zenodo.4818120 ERC Web service | July 8, 2021 | 1–2166

and for research infrastructures (Konkol et al., 2020). The
common drivers behind using containers are the need
to capture data, code, and the computational environ-
ment ideally in an automated fashion, portability, e.g., be-
tween researcher’s computers and cloud infrastructures,
and ease of use, i.e., abstracting away the complexities of
managing the environment from researchers. Workflow
tools can automate the process to capture experimental
details required for reproducibility (Davison et al., 2014;
Wolstencroft et al., 2013), but they are not directly con-
nected with scholarly review and publishing procedures.

The approaches to capture environments are mani-
fold, and once the respective package exists, portability
is given. However, the approaches do vary considerable
in their usability and accessibility.

Binder (Project Jupyter et al., 2018) uses common con-
figuration and dependency management files from differ-
ent programming languages as part of its Reproducible
Execution Environment Specification (REES) specification1.
The user cannot access the created container specification
or image, instead the project promises to consistently cre-
ate images that remain similar enough over time. In the
Whole Tale project a related underlying technology is used
to create and share reproducible computational research
(Chard et al., 2019). The project provides a multi-user
platform, which goes well beyond o2r’s scope, and uses
references to code and data, but core steps are very sim-
ilar to the ERS, e.g., publishing a tale to repositories and
interactive examination for reproduction and verification.
Tales are published in a format extending DataONE Data
Packages (Mecum et al., 2018), which rely on BagIt for
serialisation.

ReproZip (Chirigati et al., 2016) is a prominent ex-
ample for tools that use tracing of system calls to cre-
ate ReproZip packages, which can be extracted into dif-
ferent environments, e.g., a container. Umbrella (Meng
and Thain, 2015) is another tracing-based tool with a
particular focus on high-performance computing. These
solutions, however, are less portable and require the au-
thors to execute them, being overall slightly less accessi-
ble than requiring just a Notebook-based workflow. The
Popper (Jimenez et al., 2017) convention therefore gives
authors a lot of flexibility by allowing them to combine
software from the DevOps toolbox. The convention pro-
vides generic domain-independent templates for project
structure, but also require authors to be familiar with a
number of complex tools. Chuah et al. (2020) bridge be-
tween tracing and declarative approaches and also gen-
erate Dockerfiles for workflows, however, using log
files and for C/C++ and Python-based workflows. For
the tracing, they use a command-line only tool, Sciunit
(That et al., 2017), developed by the same group. Sci-
ence Capsules (Ghoshal et al., 2021) and the Cloud of Re-
producible Records 2 capture end-to-end workflows, but
put an emphasis on collaboration and their respective
scientific disciplines, and are not connected to scientific
publishing. Similarly, RENKU is a platform for creating
workflows with interlinking of artefacts, like the ERC, yet

1https://repo2docker.readthedocs.io/en/latest/specification.html
2https://www.nist.gov/programs-projects/cloud-reproducible-records

with a focus on collaboration and providing interactive
environments, not with preserving a specific state. Oc-
cam (Oliveira et al., 2018) focuses on preservation of the
full source code to mitigate shortcomings of only saving
executable binaries. Boutiques (Glatard et al., 2018) is
an application description frameworks for packaging CLI
tools. The REANA platform (imko et al., 2019) enables
creation and manipulation of reproducible computational
workflows of complex large scale analyses that go be-
yond the computational Notebooks at the core of the ERC.
Maneage (Akhlaghi et al., 2021) focuses on the lineage as-
pect of computational workflows, capturing contributions
pre-publication and extensions post-publication relying
on GNU Make, requiring familiarity with low-level tools.
Encapsulator (Pasquier et al., 2018) creates time capsules
for reproducible code, capturing the computational envi-
ronment in a virtual machine using Vagrant (Wikipedia
contributors, 2021h). Encapsulator generates a Vagrant
file and can be used with a command line interface.

Earlier approaches similar to the ERC and ERS include
Paper Mâché (Brammer et al., 2011), which uses virtual
machines for capturing papers and defines a format quite
similar to the ERC, the Paper Mâché file (.pm). This file
can be inspected using an online workbench or down-
loaded and executed on a local computer. The main differ-
ences are the capturing of reviewer comments and ratings
within the .pm file, the use of VMs, and Inkling (Castle-
berry et al., 2013) has own file formats for documents
and workflow configuration based on LaTeX and creation
of the required CLI commands, which is much less acces-
sible for non-technical users than R Markdown.

The ActivePapers project (Hinsen, 2015) describes a
platform for publishing and archiving computer-aided
research by turning scientific contents of software into
so called pure computations (Hinsen, 2015). Hinsen
presents extensive requirements, two prototypical imple-
mentations, and important lessons learned. Similarly
to ERC and ERS, ActivePapers demonstrate feasibility of
packaging reproducible research, but with a different ap-
proach without containerisation. The strong theoretical
base and implementation from the ground up of that work
are a counterweight to the more practical approach of the
ERS, which largely adapts general purpose tools. Each ap-
proach has its own limitations. Hinsen (2015) concludes
with the idea that computational models and methods
should be separated from software tools for better preser-
vation. However, this requires a deeper intrusion into the
tools used by researchers daily, and thus is a more long-
term change than the current scope of the ERS.

None of these related projects and ideas, just as the
ERC and ERS, have found considerable uptake outside of
specific groups or communities. What could help to close
the adoption gap are author guidelines by journals and
publishers. Several journals have established processes to
execute workflows that belong to submitted manuscripts.
Some of these processes rely on communication between
reviewers and authors to ensure that the reproducing
party can execute a workflow (Nüst and Eglen, 2021; Her-
oux, 2015) while others partner with commercial plat-
forms (cf. Konkol et al., 2020; ?), and others develop their

2 | https://doi.org/10.5281/zenodo.4818120 Nüst67

own formats for reproducible articles, most prominently
eLife’s ERA (Guizzardi et al., 2021). Only few publish-
ers actually recommend specific tools3. One of the excep-
tions is the journal GigaScience, which suggests multiple
tools, including ERA and Gigantum, giving authors a lot
of flexibility4 and reducing risk of betting on the wrong
approach.

3. Executable research compendium: technical
specification

3.1. Design. A research compendium5 is made up of
parts, namely (i) data, e.g., collected or simulated inputs
and calculated outputs, (ii) software, i.e., a fully auto-
mated or “scripted” computational workflow using, e.g.,
scripts, source code projects, and programming language
libraries/modules, and (iii) text and graphics for con-
sumption, e.g., instructions, a full manuscript, or figures.
The term research compendium was coined by Gentleman
and Lang (2007), reused by Stodden et al. (2015) and ex-
tended to an executable research compendium (ERC) by
Nüst et al. (2017). The ERC extends the parts of a com-
pendium in several respects: (i) it adds a further part al-
lowing interaction, the UI bindings (Konkol et al., 2019b),
(ii) it extends the generic idea of software with a well-
defined runtime environment based on containerisation,
and (iii) it requires a literate programming (Knuth, 1984)
document as the main document to execute the work-
flow. Figure 1 gives an overview of the ERC components.
Based on these extensions, ERCs realise a portable and ex-
ecutable snapshot of a computational workflow with all
documentation and presentation files and can be used as
the core building block within scholarly publishing.

More practically, the ERC technical specification
should support the goals of the ERC as described in Nüst
et al. (2017) and serve as the foundation for the imple-
mentation of a Web service for creation, examination, and
discovery of ERCs. The realisation is guided by several
design goals. All these goals intent to be “preservation
friendly”, in the sense that preservation is never some-
thing that can be completed, but an ongoing activity.
1. Simplicity and convention over configuration The
specification should not re-do something which already
exists, e.g., in form of an open specification or tool, and
not duplicate metadata unnecessarily. The risk of scatter-
ing information is mitigated by clear documentation and
outweighed by the advantages of reuse. Furthermore, it
must be possible to create a valid and working ERC man-
ually and every researcher should be able to fully under-
stand how ERCs work. Therefore, ERCs should be gener-
ally text file based, e.g., no embedded database or bina-
ries unless needed. Supporting tools should be used to
cover typical use cases with minimal required input by a
creating user. We must also acknowledge that most ERCs
will be created “post-hoc”, so before submission or after
completing a research project. While it would be bene-
ficial to steer researcher’s workflows on a highly repro-

3Cf. ACM SIGMOD’s reproducibility initiative recommending ReproZip, http:
//reproducibility.sigmod.org/.

4http://gigasciencejournal.com/blog/gigantum-joins-giga-reproducibility-machine-learning-toolkit/
5For a full list of publications on research compendia see https://research-compendium.science/.

ducible track from the beginning, because it provides a ba-
sis for real collaboration (Whitehouse, 2019), researcher
freedom, diversity in previous knowledge, and the evolu-
tionary slow change of habits and practices make this un-
realistic. The majority of cases should be covered by fol-
lowing regular conventions, whereas special cases should
be support with configuration.
2. Nested containers We acknowledge existing stan-
dards for packaging a set of files and capturing computing
environments. To be able to reuse these formats, the ERC
has an outward facing packaging, where all components
of the ERC are put into, but also contains a composite
components which themselves package complex contents.
Figure 1 shows how we distinguish these containers into
the inner or “runtime” container, which holds the software
dependencies of a particular workflow, and the outer con-
tainer, which holds the inner container and all other text,
data, and code files. Using the four layers of software
stacks in scientific computing from Figure 1 in Hinsen
(2018), the outer container contains project-specific code
and the inner container contains domain-specific tools,
scientific infrastructure, and non-scientific infrastructure.
The outer container can be used for content-unaware val-
idation and more easily adheres to established preserva-
tion practices. The nesting gives a separation that, in the
long-term as computing environments are likely to evolve
and likely break, maintains access to the core files for a
specific workflow. This also means that data and control
code is not (only) within the inner container so that one
barrier to access, e.g., data in a PDF, is not replaced with
another, e.g., data in a binary container image6. The inner
container should also be created transparently based on
an actionable text file. The duality of executable runtime
container and recipe ensures transparency and a fallback
option (Nüst and Hinz, 2019). The nesting also supports
the idea of “layered reproducibility”7 to handle different
levels of dependencies in a used software stack. The outer
container can contain a language-specific code package,
e.g., for R or Python, enabling reusability and understand-
ability, whereas the inner container captures the system
dependencies. Users with different skill sets may inter-
act with the layers differently, and layer usefulness may
change over time.
3. Transparency, stability, and Openness All configu-
ration and, as much as possible, also the content should
be based on plain text files. Plain text files are usable
by both humans and computers, ensure ERCs are accept-
able by users with varying backgrounds and levels of ex-
pertise today, secure that ERCs remain understandable to-
morrow, and enable that ERCs are easy to extend. If pos-
sible, “old” technologies are also preferable, as they are
tested and stable, and are likely to outlive innovative for-
mats8. It is therefore possible to both create and examine
an ERC manually, i.e., without any supporting infrastruc-
ture or tools. All specifications and tools are published
under open permissive licenses.

6A problem pointed out by Greg Wilson on Twitter at https://twitter.com/gvwilson/status/
1164240321028534274.

7Concept introduced by Noam Ross in an online discussion thread on rOpenSci at https://
discuss.ropensci.org/t/creating-a-package-to-reproduce-an-academic-paper/1210.

8As argued by Wilson et al. (2017), in deference to the saying: “What’s oldest lasts longest.”

Nüst ERC Web service | July 8, 2021 | 368

Fig. 1. Executable research compendium. Detailed look at software components and
the inner container, with language libraries and system dependencies, and the outer
container, with UIăbindings, documentation, data, workflow code and project libraries.

4. Multiple entrypoints Both humans and machines
need to act on ERCs. Human users need a convenient
and efficient way to interact with the substance of the re-
search that is described in publications, which Marwick
and Pilaar Birch (2018) describe with the useful “bottle-
opener” metaphor. For machines, we need a “one-click”
(Pebesma, 2013) command that can be used to execute
and rudimentarily validate a full workflow. For users, we
need a file that can be opened manually, or be shown
to them as the default document by tools when opening
an ERC. The literate programming paradigm, or compu-
tational notebooks, can support both these needs giving
authors flexibility, readers accessibility, and machines a
well-definedness.

The specification is accompanied by guides for users,
namely for readers and preservationists, and developers,
which comprises background on goals, design decisions,
and the development process. The specification docu-
ment uses technical language to clearly identify require-
ments and optional features, but is also enriched with ex-
amples and introductory texts.

3.2. The specification. The specifications is published un-
der a Creative Commons CC0 1.0 Universal License
at https://o2r.info/erc-spec/spec/ in HTML and PDF for-
mat, is developed openly in an online repository9, and
archived in Nüst (2018). This section summarises the
ERC specification—see the online specification for details.

An ERC must include a main file and a display
file. The main file follows the literate programming
paradigm (Knuth, 1984) and can be executed to create
the display file. Both files should be named accordingly
main.extension and display.extension, using cor-
rect file extensions and media type to use convention over
configuration. The ERC specification encourages R Mark-

9https://github.com/o2r-project/erc-spec/

down (Allaire et al., 2021a; Xie et al., 2018) as the format
for R-based analyses, and includes details for modelling
metadata in the YAML front matter of R Markdown files,
and for ensuring reproducibility by not using any caching
features. These two files provide the entrypoints for hu-
man readers and executing tools.

Alternative names for main file and display file may be
configured in the ERC configuration file erc.yml, which
is the third required file in an ERC. The ERC configuration
must include a globally unique identifier for the ERC, and
the version of the used ERC specification. Authorship in-
formation is expected to be present in the main file and is
therefore not repeated in the ERC configuration file. How-
ever, due to the lack of alternatives, the licenses of the core
components or ERC can be explicitly modelled in the con-
figuration file.

The final content of an ERC is the runtime environ-
ment which is represented by two files: an executable
runtime image, which includes all base software and li-
braries to execute the packaged analysis, and a runtime
manifest, which documents the images and contents as
a self-contained complete recipe in an actionable format
to create the executable runtime image. This approach
uses containerisation and the runtime environment is the
inner container. Due to Docker’s standing as a de-facto
standard, the ERC specification further defines the run-
time environment, and how tools are expected to interact
with the manifest and image, based on Docker. For exam-
ple, the image file should be saved from a cache-less con-
tainer built and must be tagged matching to the ERC ID.
To enable controlling the workflow through tools, the de-
fault commands of the image must must render the main
document and the working directory must be fixed so that
files from the ERC can be connected into the runtime en-
vironment correctly, i.e., mounted into the container. The
specification describes how these mounts are to be used to
full executions of workflows, but also for substituting spe-
cific files between ERCs. Finally, the specification requires
images to have an image tag with the ERC identifier.

The following files are an example of the payload for a
minimal ERC using R Markdown and Docker:

main.Rmd
display.html
Dockerfile
image.tar
erc.yml

An example ERC configuration file is as follows:

id: b9b0099e-9f8d-4a33-8acf-cb0c062efaec
spec_version: 1
main: main.Rmd
display: display.html
licenses:

code: MIT
data: "data_licenses_info.pdf"
text: CC-BY-4.0
metadata: CC0-1.0

The ERC bundles multiple parts to make a computa-
tional workflow and its documentation accessible, but is
itself also a digital artefact that can be distributed, shared,
and archived. Therefore the specification ends with sec-
tions on interacting with ERCs, preservation of ERCs, and

4 | https://doi.org/10.5281/zenodo.4818120 Nüst69

checking ERCs. For interactivity, the ERC configuration
file can include metadata about the ERC’s UI bindings
(see Konkol et al., 2019b). For preservation, the outer
container of an ERC is a “Bag” following the BagIt specifi-
cation (Kunze et al., 2018). BagIt which ensures reliable
storage and transfer through file checksums and ensures
compatibility with established preservation workflows in
form of bitstream preservation. The descriptive metadata
of the bag also labels an ERC as such. A draft for a pos-
sible BagIt profile is included in the specification. This
profile could make required metadata more explicit, and,
for example, disallow usage of the “fetch” feature to re-
quire self-contained bags for ERCs. To reduce the risk of
information loss, the specification deviates from the goal
to not duplicate information and instead suggests to store
metadata in all formats that specific use cases may need
within the ERC. This secondary metadata are copies of
the main metadata, e.g., the required fields and encoding
of the data repository used for ERC storage, and increase
the likelihood of at least some metadata being accessible
in the unforeseeable future. One example for such sec-
ondary metadata is Zenodo record metadata in a JSON
format. For checking ERCs, the specification defines a pro-
cedure, which ERC-supporting tools can implement. The
check of an ERC comprises the execution of the workflow,
and the comparison of the ERC’s files after the execution.
Most important file in the comparison set is, naturally, the
display file because differences can point to meaningful
deviations in a workflow’s results.

4. Opening reproducible research system archi-
tecture

4.1. Structure. The architecture for a publishing work-
flow enhanced by ERC describes a system for open-
ing reproducible research as part of a scholarly publi-
cation process— the o2r architecture. It is developed
in an online repository10, published online at https://
o2r.info/architecture/ in HTML and PDF format, follows the
arc42 Documentation template11, and is archived in Nüst
(2018). The arc42 template mandates a number of sec-
tions and contents, not all of which are described here—
see the online architecture for details.

4.2. Goals. The o2r architecture describes the relation-
ship of a reproducibility service (RS) with other services
from the context of scientific collaboration, publishing,
and preservation. Together these services can be com-
bined into a new system for transparent and reproducible
scholarly publications. As one part of such an system, the
ERS must not replicate already existing functions but in-
stead, inspired by the Unix philosophy (Wikipedia contrib-
utors, 2021g), do only one thing but do it well, namely
provide a reliable way to create and examine packages of
computational research, i.e. ERCs as reproducible publi-
cations. Existing functionalities, such as storage, authen-
tication, or persistent identifiers must be connected with
via APIs. Creation comprises uploading of a researcher’s

10https://github.com/o2r-project/architecture/
11https://docs.arc42.org/home/

workspace with code, data, and documentation to the
ERS, where a reproducible runtime environment is cap-
tured. This runtime environment forms the basis for ex-
amination, i.e. discovering, inspecting details, and manip-
ulating workflows on an online platform. For the users, it
is important that these features are provided in a guided
process with excellent user experience, without too much
expose of the underlying complex technology. Technol-
ogy is more successful when it is easy to get things done
(Bouffler, 2019). At the same time, the system must be
transparent, so itself can be scrutinised and does not put
the rigorousness of the actual ERCs into question.

The considered stakeholders in the architecture are
author (scientist), who publishes an ERC as part of a sci-
entific publication process to build a convincing argument,
reviewer or editor (scientist), who examines an ERC dur-
ing a review process to assess reproducibility and valid-
ity of results, reader (scientist), who views and interacts
with an ERC on a journal website to understand meth-
ods and build upon results, publisher, who offer ERC-
based publishing to increase quality of publications, cura-
tor or preservationist, who ensures research is complete
and archivable using ERC, operator, who provides infras-
tructure to researchers at own university or publisher to
communicate high-quality research using an ERC, and de-
veloper, who use and extend the tools around ERCs. For
the remainder of this section, a focus lies on the author,
reviewer, publisher, and preservationist.

4.3. Scope, context, and solution strategy. The system
scope and business context are summarised in Figure 2
and describe the relations between infrastructures and
services for communicating scientific computational work-
flows. The stakeholders interact with a number of plat-
forms (leftmost column), but no directly with the ERS
(second column). The publishing platforms, which au-
thors and reviewers use, connect with the ERS through
its API. Publishing platforms such as journal submission
and review systems offer users to upload or create ERCs,
track the submission status and access rights, e.g., for re-
viewers, and eventually expose published ERCs through
their search results and journal websites. The ERS may re-
trieve files from collaborations platforms, where authors
collaborate on data, code or text, if authors submit links
instead of directly uploading files, and it can use registries
to both harvest and publish metadata. These registries
power catalogues and search portals directly and medi-
ately via data repositories and archives, and thereby en-
able users to discover ERCs. The ERS offers ERC cre-
ation and examination services and uses different sup-
porting services (third column) to authenticate users, to
retrieve software artefacts, to store runtime environment
images, to execute workflows, and to store ERCs. Using
an existing ID provider frees the ERS from storing au-
thentication data securely and from ensuring that users
are real persons. The execution infrastructure is accessed
through containerisation tools based on the HTTP pro-
tocol and thus is scalable, e.g., when deployed in a dis-
tributed cloud-based infrastructure. Software reposito-
ries repository provide software artefacts during ERC cre-

Nüst ERC Web service | July 8, 2021 | 570

ation, e.g., installing software libraries from a program-
ming language’s package distribution infrastructure, and
can also provide standardised APIs to store to containers
of the executable runtime environments. Data repository
service the reproducibility service with content for ERC
creation but can also store the completed ERCs. In turn
the data repositories may connect to archives and digital
preservation systems (rightmost column) for long-term
storage. These archives employ extended data and meta-
data management because a different kind of access and
re-use is of concern for these systems, e.g., to ensure long-
term access rights, and therefore these concerns are rele-
vant for the ERS even though it does not directly connect
to archives, as the ERS should ensure a smooth transfer
of created ERCs from storage to archives. The supporting
services also connect with each other, for example, the
execution infrastructure can access trusted data reposito-
ries to download data that for reasons of storage size are
not included within an ERC. All of these systems are con-
nected through Web protocols.

The solution strategy of the architecture describe the
architectural decisions. First, the developed solution is
set in an existing system of services, and first and fore-
most must integrate well with these systems, focusing on
the specific missing features of building and running ERCs.
These features are provided via a well-defined Web API in
the ERS. Second, internally a microservice architecture is
used to allow dynamic development, e.g., independent de-
velopment and deployment cycles, and support the large
variety of skills available in the academic development
team. This architecture comes at the cost of increased
application complexity when it comes to testing and de-
ployment. The application state is shared between mi-
croservices through a database. The database’s operation
log is used to power notifications and events across mi-
croservices and real-time updates of the user interface
based on WebSockets. Third, the ERS itself does not pro-
vide a reliable storage solution. The microservices simply
share a common pointer to a local file system path which
should be regarded as ephemeral. Forth, the client appli-
cation manages the control flow of all user interactions
and ensures the Web API operations are executed in the
required order. Finally, generic functions should be devel-
oped as standalone tools with a command-line interface
(CLI). The CLI allows integration into microservices and
independent usage at the same time. These generic func-
tions can be packaged in container images and executed
as containers by the microservices, which ensures easy dis-
tribution through a container registry and independent
updating from the microservices themselves, but also al-
lows to run tools either next to the microservices or in an
independent container cluster, thus providing scalability.

4.4. Building block view. The arc42 template defines ar-
chitectural components in alternating layers of black box,
where only the outside appearance and interaction op-
tions are described, and white box, where internal details
are given. A white box layer then includes components
described as black boxes, etc. In this work, we single out
the white box view on the reproducibility service (RS) as

shown in Figure 3. The ERS itself consists of a webserver
to distribute incoming API calls to the microservices as a
reverse proxy and to serve the static files of the user inter-
face. The webserver also manages secure communication
via HTTPS. The microservices run in containers. The use
containerised tools, namely containerit (Nüst and Hinz,
2019) and o2r-meta12, connect to a MongoDB document
database for ERC metadata, users, and session informa-
tion, connect to an Elasticsearch search index for full-text
search and advanced queries, and access a local shared
file storage which is mounted into every microservice con-
tainer. The webserver as well as the databases also run as
containers. The microservices are implemented in multi-
ple programming languages, namely JavaScript (Node.js),
R, and Python. Each microservice is generally responsible
for one endpoint in the API or for larger sets of features,
such as live notifications or exporting of ERCs.

4.5. Runtime view. The two main scenarios of ERC cre-
ation and ERC examination are described with sequence
diagrams in Figure 4 and Figure 5 respectively. In the
ERC creation sequence, the author creates an ERC from
their workspace of data, code, and documentation. The
author can provide these resources as a direct upload, but
a more comfortable process is loading the files from a
collaboration platform, e.g., from a public share created
at a cloud file storage provider. After the files are avail-
able, the o2r-meta tool tries to extract metadata from the
available files, so the user must not fill out all fields man-
ually. In the same step, the metadata is translated into
multiple file formats, broker metadata, and saved so that
exported ERCs are more likely to include metadata un-
derstood by other services, such as archives. The ERC
is now a non-public candidate compendium, until the the
users has checked and possible updated metadata, which
triggers a metadata validation, i.e., if all mandatory fields
are provided, and possible a further brokering. Then the
compendium is saved. If users want to provide access to
a candidate compendium, they can also create a public
link that gives read-only access and allows execution (op-
tion not included in diagram). Next, a user can start jobs
for a published compendium, i.e., execute the workflow.
Part of the job execution is to automatically create miss-
ing configuration files, i.e., the erc.yml, and the runtime
environment manifest and image. This relies on the con-
tainerit tool and the execution infrastructure. As the last
step of a successful job, the runtime environment image
is exported into the ERC. If configuration file and run-
time environment are already present, their generation
is skipped. Finally, the user starts a shipment, i.e., a depo-
sition of the ERC to a data repository. For this step, the
ERC is packaged as a Bag. To be able to check the correct
upload at the repository, the publishing of the shipment is
an extra action by the user.

In the ERC examination sequence, the user initiates
the opening of an existing ERC by providing a reference
such as DOI or URL. The ERS retrieves the ERC, saves
the files locally and loads the contained metadata. Then
the user can start a new job for the compendium. The

12https://github.com/o2r-project/o2r-meta

6 | https://doi.org/10.5281/zenodo.4818120 Nüst71

Fig. 2. Business context; full scale image online at https://o2r.info/architecture/#31-business-context.

Fig. 3. White box Reproducibility Service; full scale image online at https://o2r.info/architecture/#527-whitebox-reproducibility-service.

Nüst ERC Web service | July 8, 2021 | 772

Fig. 4. Runtime view ERC Creation; full scale image online at https://o2r.info/architecture/#61-erc-creation.

8 | https://doi.org/10.5281/zenodo.4818120 Nüst73

user’s client can use the ID to connect to the live logs as
the job runs through all steps (see Section 5.1 for details
about the job steps). The job starts with creating a copy
of the compendium’s files for the job. The copy allows to
compare the original output, i.e., the display file, with the
newly created one. A copy-on-write file system is advan-
tageous for this step. Then the archived runtime image
is loaded from the file in the compendium into a runtime
repository. This repository may be remote and either pub-
lic or private, e.g. based on the Docker Registry or a GitLab
instance, or simply the local image storage. Then all files
except the runtime image archive are packed so they can
be send to a container runtime. The container runtime
can be local, e.g., the Docker daemon, or a container or-
chestration infrastructure such as Kubernetes. The con-
tainer run provides log updates as a stream to the mi-
croservices, which update the database, whose changes
trigger updates of the user interface. When the container
is finished, the microservice compares the created outputs
with the ones provided in the compendium using the erc-
checker13 tool. The result is a display file with highlighted
differences both in text and graphics, which is shown to
the user as can be seen in Figure 8. Based on these aids,
the reader, e.g., the reviewer, can quickly determine if de-
viations in the outputs are relevant or not, e.g., if they
are only graphical artefacts or acceptable numerical vari-
ation.

5. Reproducibility service

5.1. API. The ERS exposes its functionality via a REST-
ful HTTP API. The API is specified using the OpenAPI
model (Wikipedia contributors, 2021f). It uses WebSock-
ets (Wikipedia contributors, 2021i) for push-based noti-
fication from server to client and encodes requests and
responses in JSON. It is developed in a public reposi-
tory14, hosted online at https://o2r.info/api/, and archived in
Nüst (2018). The website provides access to the machine-
readable specification in YAML format15 and an HTML
rendering for reading.

The API provides several endpoints to manage compen-
dia and their metadata, compendium execution (jobs, and
links for authentication-free execution), compendium
substitution, compendium shipments, and users and their
authentication and access levels. For full examples of
resources, e.g., for ERC metadata, please see the demo
server and reference implementation (Section 5.2). The
management operations use matching HTTP verbs for cre-
ating (POST), listing or retrieving (GET), updating (PUT),
and deleting (DELETE) resources. Different user lev-
els allow or prevent certain operations only for specific
users, most importantly only “known” users after a man-
ual check following the registration are allowed to create
and examine ERCs. User authentication is based on the
OAuth 2.0 protocol (Hardt, 2012) and operation authen-
tication against the API uses a session cookie. The API
includes a version in the URL path and provides index

13https://o2r.info/erc-checker/
14https://github.com/o2r-project/api-spec/
15https://o2r.info/api/o2r-openapi.yml

responses to support client-side construction endpoints
and stability. The following JSON documents are the re-
sponses to the /api/ and /api/v1 endpoints. The latter
document lists all resources of the API that must be com-
bined in sequence, controlled by the client-side, to realise
the runtime interactions described in the Section 4.5.

{
"about": "https://o2r.info",
"versions": {

"current": "/api/v1",
"v1": "/api/v1"

}
}

{
"auth": "/api/v1/auth",
"compendia": "/api/v1/compendium",
"jobs": "/api/v1/job",
"users": "/api/v1/user",
"search": "/api/v1/search",
"shipments": "/api/v1/shipment",
"recipients": "/api/v1/recipient",
"substitutions": "/api/v1/substitution",
"links": "/api/v1/link"

}

Complex compound resources, such as
../compendium, also provide sub-resources to ac-
cess parts or related resources more conveniently, e.g.,
../compndium/abc12/jobs to access related jobs.
Query parameters on selected resources are provided to
filter the results. For example, the URL (spaces added for
readability) ../job? limit=10&compendium_id=abc12
&status=success&fields=user returns at most 10
jobs which succeeded, including the users who started
them, for the compendium with identifier abc12. The
../users resource facilitates user management and
../search the discovery of ERCs and jobs. As these are
common API features, they are not described in detail
here. Konkol et al. (2019b) describes the concepts of
user interface bindings and how to create new ERCs
through substitution, modelled in the ../bindings and
../substitution resources, in detail.

The execution of a compendium consists of a fixed se-
quence of job steps. The steps can have one of multi-
ple statuses: success, failure, and running. The over-
all job status is a combination of the steps’ statuses—if at
least on step is failure or running, so is the job. Some
steps can be skipped because the job for executing a com-
plete compendium and executing a workspace to create
a complete compendium share some steps that should
be readily reused in implementations of the API. The job
metadata captures logging messages and start/end time
separately for each step. Because jobs are computation-
ally intensive operations, users must be logged in to start
a job. The job steps are (cf. Section 4.5):

1. Validate the bag (skipped if workspace)
2. Generate compendium configuration (skipped if

present)
3. Validate compendium
4. Generate inner container manifest (skipped if

present)
5. Prepare image payload archive (to build and run the

image on remote hosts; possibly costly operation)

Nüst ERC Web service | July 8, 2021 | 974

Fig. 5. Runtime view ERC examination; full scale image online at https://o2r.info/architecture/#62-erc-inspection.

Fig. 6. Screenshot of the ERS user interface showing the result of a failed job execution due to differences in a figure; left column: display file provided by the author, middle column:
display file generated by the ERS, right column: display file with highlighted difference generated by erc-checker.

10 | https://doi.org/10.5281/zenodo.4818120 Nüst75

6. Build image and add image tag erc:<erc
identifier>

7. Execute container
8. Check the display file of the job against the com-

pendium’s baseline
9. Save image to tarball (skipped if check failed)

10. Cleanup (implementation specific)

An editor or admin, but not users themselves, can cre-
ate a link with the resource ../link which provides a
second identifier for a specific compendium which allows
users to execute a compendium without logging in. Such
link identifiers may be short lived or dynamic.

The process of exporting a compendium to a storing
repository is called shipment (cf. Section 4.5) and is mod-
elled in the two endpoints ../recipient, which lists sup-
ported services, and ../shipment, which controls the
possibly costly and irreversible operation. To allow val-
idation in the receiving service, the export is a two step
process: first the new shipment is created, then the actual
publishment can be triggered.

5.2. Reference implementation. The microservice archi-
tecture results in numerous projects within the o2r code
organisation16. For easier evaluation and reproducibility,
all microservices are integrated in one single code repos-
itory reference-implementation17 using git submod-
ules, which is archived in Nüst (2018). The online demo
server is available at https://o2r.uni-muenster.de.

The following instructions require Docker (Wikipedia
contributors, 2021c) (tested with version 20.x) and GNU
Make (Wikipedia contributors, 2021e) (tested with ver-
sion 4.1). The commands must be executed in the base
directory of the reference-implementation. If Make is
not available (e.g., on Windows OS), then the instructions
of make targets in the Makefile may be executed manu-
ally on a command line. The target reproduce loads the
images saved to tarballs and executes them in a configura-
tion suitable for local testing and development based on
docker-compose (Docker Inc., 2019). The demonstra-
tion project includes a small OAuth provider so that users
can log in with different user levels with a single click.

clone https://github.com/o2r-project/reference-implementation
cd reference-implementation
make reproduce
to use git repo configuration and not Zenodo: make release

5.3. Examples. A number of example ERCs have been
published on the demonstration platform of the o2r
project—see Section 5.2 and on GitHub18. These exam-
ples include over a dozen scientific articles reproduced as
part of Konkol et al. (2019a). One ERC was part of a pilot
collaboration with the Copernicus Journal ESSD, which
conducts open reviews. The referee report (González Áva-
los, 2020) mentions the ERC positively.

A complete minimal example is given by the ERC
configuration file above (see Section 3.2) and the fol-

16https://github.com/o2r-project/
17https://github.com/o2r-project/reference-implementation
18https://github.com/o2r-project/erc-examples/

lowing four documents. The minimal example is pub-
lished at https://o2r.uni-muenster.de/erc/q7Eje. The data
file, data.csv, provides a simple statistics about cargo
ships19:

"year","capacity"
"1980",11
"1985",20
"1990",26
"1995",44
"2000",64
"2005",98
"2010",169
"2014",216
"2015",228
"2016",244

The Dockerfile defines the computational environ-
ment (extra line breaks for readability).

FROM rocker/geospatial:3.4.4
LABEL maintainer="o2r"
Packages skipped because in base image: [shortened]
WORKDIR /erc/
CMD ["R", "--vanilla", "-e",

"rmarkdown::render(input = \"/erc/main.Rmd\",
output_format = rmarkdown::html_document(),
output_dir = \"/erc\", output_file = \"display.html\")"]

Because of the small example, it installs no soft-
ware into the base image. The final line configures the
command to be run when the ERC is executed. The
Dockerfile and erc.yml are generated by the ERS, en-
suring that the rendering command matches the way that
the ERS mounts the ERC’s files into the container. The
other files are created by the author.

The source of the HTML display file, display.html,
shown in the left hand side of Figure 7, is not included
here. The display file can serve as the baseline for assess-
ing whether the reproduction was successful. The R Mark-
down document includes metadata and a simple plot func-
tion to show the input data:

title: "Capacity of container ships in seaborne trade from 1980

to 2016 (in million dwt)*"
author:

- name: "Daniel Nüst"
affiliation: o2r team

date: "2017"
output: html_document
abstract: |

Capacity of container ships in seaborne trade of [shortened]
doi: http://dx.doi.org/10.5555/666655554444

```{r plot, echo=FALSE}
library(knitr)
opts_chunk$set(dev="png", dev.args=list(type="cairo"), dpi=96)

data <- read.csv(file = "data.csv")
data <- data[sample(nrow(data)),]
barplot(height = data$capacity, names.arg = data$year,

ylab = "capacity", sub = "(c) Statista 2017")
```

[shortened for inclusion in paper]

Note the use of the sample(..) function, which ran-
domises the order of the data to demonstrate the display
of the check, shown in Figure 8. The R Markdown front-
matter could include additional information, such as a
licenses element or keywords, which are used by the

19 l’ Statista 2017, Source: https://www.statista.com/statistics/267603/capacity-of-container-ships-in-the-
global-seaborne-trade/.

Nüst ERC Web service | July 8, 2021 | 1176

Fig. 7. Screenshot of ERC examination view in the ERS. The left hand side shows
the display file rendering in HTML, the right hand side allows to inspect the source
RăMarkdown document and the input data.

ERS to pre-fill the ERC creation form. The doi can link
to a related publication in case the ERC is created as a
supplement.

This example also demonstrates that creation of an
ERC is possible by hand. None of the generated files
(Dockerfile, erc.yml) are more complex than the main
file authored by a researcher, even if researchers need to
educate themselves to create the former file (cf. Nüst et al.,
2020). To create the outer package, command line tools
such as bagit20 can be employed. Finally, the ERC also
demonstrates that manual examination is feasible. First,
the outer package can be unzipped. Then, the ERC con-
figuration file defines the main document to inspect for
control code, trivial in this example but in complex work-
flows possibly not quite so easy, and the display file to
open for reading. The commands in the Dockerfile can
be used to recreate the computational environment man-
ually, with the complication that the base image must be
available to dig out the commands used to create it from
the image layer metadata.

6. Discussion

This work presents one specific implementation of how
computational reproducibility can be connected with
scholarly review and publishing. Naturally, a single im-
plementation of an API used only by one project team has
severe limitations and experiences are not generalisable,
not the least because of the confining context of a research
project. Nevertheless, the implementation nevertheless
points out many important aspects and taught valuable
lessons, which can help to adopt concepts, specifications,
or even software for a productive infrastructure.

20https://libraryofcongress.github.io/bagit-python/

Fig. 8. Partial screenshot of ERC check result in the ERS. Three columns compare
the display file provided by the author (left hand side) with the display file generated by
the ERS (middle). The right hand side column adds a visual highlight to show the differ-
ences between the two plots, in this case quite exaggerated in the columns, but small
differences, e.g., in the figure margins, could be easily judged by a human examiner as
irrelevant.

6.1. Project set-up, maintainability, and security. On the
project set-up and maintainability, the presented web ser-
vice does fulfil the need for an extensible trustworthy soft-
ware by being an open, FOSS project itself, prohibiting
vendor lock-in and standards lock-in, and ensuring the
crucial option to examine the platform itself. The ERS
focuses on one specific problem: creating and examin-
ing ERCs for aiding scholarly peer review so that code
central to claims made in a submission can be evaluated
(cf. Hawkins, 2019). It does not solve data curation21 or
storage, nor has it measures to evaluate quality of data,
software, or the scientific merit. This reduction, albeit
the internal complexity of the tools, improves the usabil-
ity and extensibility.

The complexity introduced through the many microser-
vices was good at the start as it provided flexibility, but
the need for consolidation for sustainability lead to re-
integration of some services since their inception. The
ERS itself uses containers and is therefore readily in-
stalled in various infrastructures. Furthermore, the ERS
as such is not limited to geospatial sciences at all, but
the communication within the community and the test-
ing and demonstrations with examples need to be tai-
lored towards a specific audience to increase chances for
adoption. This is partly an explanation for the numer-
ous, seemingly redundant, tools presented in Section 2.
On the long-term maintainability of the project, the indi-
vidual software components have a bus factor (Wikipedia
contributors, 2021b) of 1, at most 2, which is of course
bad. A mitigation that works at least until the ERS it-
self breaks, could be the integration of the ERS with
repo2docker [cf. project_jupyter_binder_2018], so that
an ERC saved to a repository can be loaded into Binder-
Hub, where the erc.yml triggers the Binder to be opened
with the ERS and o2r user interface. Regarding security,
containerisation offers good mechanisms for controlling
unknown code with respect to used resources, and the
container sandbox should be further hardened for produc-
tive systems, e.g., using AppArmor (Wikipedia contribu-
tors, 2021a). The ERS could also be extended to only ex-

21To get a glimpse of the curators’ perspective, take a look at the first draft for a GeoJSON curation
primer, a file format probably deemed “simple” be geospatial data researchers[ˆ14].

12 | https://doi.org/10.5281/zenodo.4818120 Nüst77

amine ERCs created by itself through signing ERCs. This
gives the ERS control over the image build process, es-
pecially the base image and the allowed software repos-
itories. The main security feature are the real user pro-
files through the user login based on ORCID. The ORCID
project has measures to identify fake accounts, and users
are given the rights to create ERCs manually by ERS ad-
ministrators.

Finally, the ERS is fully dependent on the Docker con-
tainer runtime at this point—a technology that while sta-
ble at its core and subject to standardisation itself22, could
be reduced considerably in its features to provide a sta-
bler footing tailored to research and preservation require-
ments. More modern and less vendor-specific alterna-
tives, including rootless Docker or plain OCI-based tools
for building and running images, should also be explored.
Beyond the sandboxing of Docker and the controlled user
access, no further security measures have been explored.
The more containers are used in research, the more likely
it becomes that a special container and image specifica-
tion, which can be maintained long term and is tested
with preservation strategies (cf. Emsley and De Roure,
2018; Rechert et al., 2017), will be developed, e.g., based
on Singularity Image Format23 or on OCI Image Format24.
Besides preservation, specialised container runtimes can
also provide provenance metadata, improve performance,
and enable composition into pipelines (Youngdahl et al.,
2019; Molenaar et al., 2018). These adoptions are needed
to resolve the conflict between reproducibility and tools
that are largely driven by requirements for scalable cloud
computing, which where not designed with preservation
in mind 25. An alternative mitigation could be multiple
(cf. Glatard et al., 2018) container engines, which could
not be realised for the ERS yet. Furthermore, the lessons
learned from alternative approaches, such as ActivePa-
pers (Hinsen, 2015), should be critically evaluated and
translated into improvements for the next generation of
the ERC and ERS. Finally, the many diverse approaches
for sharing reproducible workflows (cf. related work) are
important to explore alternatives and serve specific needs,
but there certainly is also potential for standardisation
and consolidation that would be beneficial for long-term
maintenance of the ERS or other platforms (cf. Mecum
et al., 2018).

6.2. Understandability and usability. The ERC is not an
abstraction that hides uncertainty. Instead it is sim-
ple enough that is should be understandable by all re-
searchers using computational methods. The core con-
cepts of computational notebooks and containerisation
are becoming more widespread across researchers im-
proving reproducibility of their works, and therefore the
combination of both into the ERC is likely to be under-
standable and usable, too. One can examine ERCs with-
out the reproducibility service26, and the ideas of mul-

22https://opencontainers.org/
23https://github.com/hpcng/sif
24https://github.com/opencontainers/image-spec
25See for example the challenges around the tar format used in container images: https://

www.cyphar.com/blog/post/20190121-ociv2-images-i- tar
26https://o2r.info/erc-spec/user-guide/examination/#manual

tiple entrypoints and nested containers are quickly ex-
plained. However, it is more realistic to require from re-
searchers to use R Markdown than to ask them to learn
metadata standards and become proficient in container-
isation. The price for a stable capturing of the compu-
tational environment—executing the workflow once— is
therefore acceptable. The tedious task of capturing rele-
vant metadata is also automated as much as possible and
ensures high user-friendliness for authors. The organisa-
tion of the ERC contents beyond the entrypoints are lie
with the authoring researchers. The ERS makes sure the
ERC is not a black box, but the author makes sure the
contents are understandable. More expressive modelling
of the workflow could be beneficial and related specifica-
tions do it, but the flexibility does have advantages when
it comes to adoption and adaptability for different com-
munities. Authors may choose to use, e.g., digital scien-
tific notations [cf.] that are suitable for their work, as
long the the full workflow is executed from the main doc-
ument. The used template or structure can be exposed
transparently in the ERC metadata via a resolvable iden-
tifier. Notably, the ERC is not a collaboration format. We
expect collaborating researchers to work on the level of
notebooks and workflow pipelines, which they can then
wrap in an R Markdown document when submitting their
study. Finally, the ERC and Web service need to be evalu-
ated from a user perspective with a larger pilot (cf. prod-
uct based approach and focus on user needs as argued
in (Whitehouse, 2019)) to complement the internal re-
flections presented here. Some specific challenges could
already be identified, such as the lack of an explicit con-
figuration of the time zone that leads to check failures
because times are off by one hour between original and
reproduced display file. In that case, the environment
variable TZ=CET in the original workflow could resolve
the issue. However, only and exposure to various types
of users and workflows can harden the processes enough
against edge cases.

One core challenge is the proper modelling and docu-
mentation of licenses. This is quite complex for an aggre-
gated artefact like the ERC, though it naturally works best
with open data/methods/source software/text licenses,
if it can made to work with non-open licenses or pro-
prietary software at all, which was not considered for
this work. The current specification and implementation
merely scratch the surface with individual licenses for the
main components, but also go further in explicitly mod-
elling them as other reproducibility formats. This is a
compromise to at least provide compatible licenses for im-
portant parts, but does not do the importance of software
citation (Katz et al., 2021) and giving contributors credit
enough justice. The redistribution of full software stacks,
however, should be less of a licensing issue as free and
open source software licenses explicitly allow this, espe-
cially for unchanged software. Software and data cita-
tion remain a challenge for all aggregating reproducibility
packages, yet the ERC could have the potential to derive
machine-readable metadata for automating parts of work-
flow citation networks.

For developers and operators we see the usability of

Nüst ERC Web service | July 8, 2021 | 1378

the API as quite good, though a better distinction between
loading of workspace and opening of an ERC, which cur-
rently is realised with complex payloads to the same API
endpoint, could be helpful. The integration into publish-
ing systems has not been realised, e.g., regarding user au-
thentication. only implemented authentication provider
is ORCID27, which may not work for interested publish-
ers. Furthermore, the procedural integration with pub-
lishing platforms is still under development with a focus
on the Open Journal Systems (OJS). The performance of
the ERS was investigated with a bespoke load test script
which simulated parallel ERC creation and examination
sessions. The sessions included a small randomness and
relatively long pauses where use interaction, e.g., reading
a paper or filling out a form, can be expected, and a fixed
execution time of the actual process. Using the existing
demo server, the wait times during tests were found to be
generally acceptable, given that the user is aware of rather
complex operations happening. A detailed report on the
load tests is part of the ERS API documentation28. The
custom load testing code is very well suited for evaluating
ERS deployments and their scalability in different infras-
tructures. Finally, the sustainability of the implementa-
tion is, naturally for a research prototype, unclear. While
several developers have worked on the platform, which
increases trust in documentation and maintainability, the
microservice-based approach also led to some fragmenta-
tion with multiple used programming languages (Node.js,
Python).

6.3. Capabilities and features. Regarding the capabilities
and features, the ERS can serve an important purpose for
integrating workflow reproductions into peer review. The
ERS allows to take snapshots at the point of submission
and make these snapshots available to peer reviewers can
assist examination of manuscripts. First, a visual com-
parison of the display files created by the authors and
the ERS itself. Second, the UI bindings to interact with
specific parts of the workflow. Third, the substitution of
individual files in an ERC with files from a second ERC,
or, in the future, with locally available files, enables cre-
ation new workflows and even deeper examination. The
ERS can thereby assist the human, who needs to be in the
loop to make the judgement call about how close some-
thing has to be to the original result to be deemed a repro-
duction, i.e., a margin of acceptable discordance or “zone
of reproducibility” that helps to separate reproducibility
from validity (ter Riet et al., 2019). Hinsen (2018) distin-
guishes reproducibility as a software challenge, whereas
a Human-Computer Interaction (HCI) perspective focuses
on usage and reasoning, which is more important for ver-
ifiability In the same sense, UI bindings aide verification
on the basis of a reproducible computation.

A part of the potential for assisting researchers that is
largely untapped is the area of research discovery based
on ERC. While the search endpoint of the API had been im-
plemented using a powerful search index, Elasticsearch,
the support was dropped because (a) it made the repro-

27https://www.orcid.org/
28https://o2r.info/api/evaluation/load_test.html

ducibility service development and installation more com-
plex, and (b) discovery through the reproducibility ser-
vice is not a long-term solution as it only has short term
storage of ERCs. Leveraging the connections between the
ERC’s parts and the exposure of main document and soft-
ware stack for search and discovery should be placed at
the repositories storing ERCs.

The snapshot is naturally a compromise between
reliability—something works now for a specific purpose—
and reusability—something can be extended, build upon.
An “active maintenance” (Peer et al., 2021), where work-
flows are constantly tested with new software releases
and fixes are applied, would be more sustainable and
more powerful to enable extensibility and reuse. How-
ever, the ERC as a snapshots but one that is in line with
the common rhythm of term-based funding and paper
publications as scientists’ main means of communication
(cf. Peng and Hicks, 2021).

The “closed” self-contained approach of an ERC has ad-
vantages for many workflows and can fit anything that
works on a researcher’s regular machine, but needs to be
revisited with an increasing number of big datasets, sen-
sitive data, and complex computations, e.g., in Remote
Sensing or tracking data. Authors may already choose
the most suitable level of detail and preprocessing needed
to communicate their work effectively, and widely known
and standardised steps may be skipped. Also, higher-level
integrated data of more manageable size, e.g., analysis
ready data [ARD; Frantz (2019)], may help to reduce ERC
sizes. Going beyond steps that individual authors can
take to support big data science, the idea to support an
allowlist of trusted data repositories and computing ser-
vices (cf. Nüst and Schutzeichel, 2017), which may be
contacted by ERCs during creation and execution through
a controlled network channel, is currently under develop-
ment. For example, a journal may allow a collaborating
repository or a reliable open computing infrastructure to
be used by an ERC’s workflow. The long-term feasibility
could be improved if a journal critically picks these ser-
vices and prefers open APIs, such as openEO for integrat-
ing external computing resources (Schramm et al., 2021).
These allowed connections must be made transparent in
the ERC configuration to enable reproducibility services
to be able to decide if they can create or examine a par-
ticular compendium. Recording outside communication
during the initial execution and replaying for future exam-
inations could also be a way to create a backup of external
resources, similar to a performance enhancing cache. The
nature of secured communication leads to these backups
being black boxes, though, and they are therefore chal-
lenging for open research and preservation. Moreover,
external connections may also be a solution to the fol-
lowing problem: The ERC and ERS do not have a build-
in option to handle privacy or sensitive data, though the
file-based substitution mechanism could be extended to
replace synthetic public data with protected real datasets.
Furthermore, the ERS could be extended with existing ap-
proaches for controlled access both for during and after
peer review (cf. Nüst and Pebesma, 2020).

At first glance, the ERS seems to be severely limited by

14 | https://doi.org/10.5281/zenodo.4818120 Nüst79

the focus on R Markdown for the main file and HTML for
the display file. Yet, R is the lingua franca of statistics and
more and more used, but more importantly, R Markdown
as common ground format for reproducible research is
second to none when it comes to creating publication
ready display documents, including citation management,
templates, and both Web and print output formats (i.e.,
PDF), and transparency due to its plain text nature29.
Templates for R Markdown could be provided by pub-
lishers though today are mostly community maintained
(Allaire et al., 2021b). However, adopting R Markdown
as the core internal format may be too high of a hur-
dle for publishers, despite the problems that copy-editing
poses for detailed reproducibility. Publisher-led approach
such as ERA (Guizzardi et al., 2021) that connect compu-
tational notebooks with standardised publishing formats
could be easier to adopt, but lack some of the ERS’s fea-
tures. R Markdown also supports more programming lan-
guages than just R and, if nothing else works, a quite
short and simple R Markdown notebook could be used as
a wrapper for starting the actual process. Such wrapping
may even be automated (cf. Glatard et al., 2018) and
templates can lower entry barriers. Even authors used
to common word processors can participate in collabora-
tions thanks to round-trip conversion tools with support
for tracking changes using the prototypical redoc pack-
age (Ross, 2021).

6.4. Extent of capturing and ERCs’ lifespan. The ERC cap-
tures all building blocks of a given piece of research. It
clearly distinguishes between workflow specific files and
the required runtime environment through its concept
of nested containers. The ERC specifically attempts to
capture relevant metadata for reproducibility, such as au-
thors, the used libraries, or the UI bindings, and provides
these metadata in multiple encodings. Also, not only the
extent but also where parts are captured are crucial for
reassuring accessibility. In the ERC, the actual workflow
scripts and data are captured in the outer container be-
cause data is more long-lived than software30 and it will
be accessible even when the ERS and the inner container
break. The ERS procedures allow to capture these de-
tailed metadata with very limited user interaction, e.g.,
the metadata extraction capabilities for geospatial extent.
Nevertheless, the interaction with the actual code session,
which is used to capture the computing environment, is
yet to be tapped for even better metadata. The inner con-
tainer does explicitly not capture the operating system
kernel. This limitation is acceptable—the kernel almost
never introduces breaking changes. Furthermore, the
ERC does not capture hardware, which makes sense, but it
should better document the required hardware. Contain-
ers can very well be connected to accelerated computing
infrastructures, such as GPUs (Haydel et al., 2015), and
the ERC configuration file should document this.

The limitations of the ERC’s self-containedness were

29The second broadly used notebook format, Jupyter Notebook, is actively developing similar capabilities,
e.g., using Jupytext (https://jupytext.readthedocs.io/), nbconvert (https://nbconvert.readthedocs.io/),
and Jupyter Book (Executable Books Community, 2020). With these tools, the ERC concept of trans-
parent main document and display file could be implemented.

30cf. http://www.activepapers.org/

discussed above. With respect to the extent of capturing,
the ERS could be enhanced to support the often service-
based GIScience and geospatial data science by not only
containing a single runtime environment for the workflow,
but by including multiple containers for running the re-
quired APIs. These containers would have to be orches-
trated, e.g., using docker-compose (Docker Inc., 2019),
for ERC examination. Examples are scientific data storage
and processing capabilities using services such as SciDB
(Appel et al., 2018) or OGC WPS implementations (Díaz
et al., 2008). While many of these services use geospatial
libraries that could also be directly used in a workflow,
capturing them as-is and keeping the client-side workflow
code could reduce overheads for authors. How much this
could be automated would depend on the openness of the
used third party services, but manual ERC creation seems
likely to be required. Furthermore, limitations concerning
scalability might arise though data subsets for demonstra-
tion could mitigate this problem.

Regarding the ERC’s lifespan, making research re-
producible forever is not a wise goal. The lifespan is
discussed here disregarding general ignorance of how
quickly digital resources and free services may decay or
disappear31. First, we cannot imagine today how com-
puters will look like in 50 or 60 years. Science histori-
ans might still find a lot of valuable information in ERC,
though. Second, even though some software (e.g., FOR-
TRAN, GNU Make) has been around a long time, for the
majority of research workflows it is reasonable to assume
that after not being actively maintained (Peer et al., 2021)
for a while, a re-implementation based on the logic, which
still readable within the source code, is more feasible than
making a workflow executable again. At the same time,
we do not expect pieces of software that are relevant and
useful to simply disappear within a few years and only be
preserved in ERCs. Therefore, the benchmark should be
whether a snapshot of an often fragile software stack is
executable for around the same time that is currently re-
quired for data to be kept available—around 10 years. We
think the ERC and the ERS, both using current container-
isation technology, can achieve that and an organisation
(e.g., a publisher) which bases their workflow on ERCs
could reasonably support a software system for at least
that time frame. The longevity of ERS and ERC could be
increased with a specialised container runtime that may
reduce the feature set but focuses on long-term execution
of containers. At this point, however, this assumption
cannot be tested but should be checked in a few years.
Then, “old” ERCs could be revisited to learn more about
the preservation of computational workflows, e.g., how
to ensure the “deep integrity” of fully containerised work-
flows. ERCs could be recreated regularly with current ver-
sions of the computing environment (re-capturing of the
inner container) in a fully automatic way to identify both
when dependencies and when the infrastructure breaks.
We acknowledge a half life of computations and “exact
repeatability”, but the medium term executability of ERC
is already a huge improvement over the current state of

31This XKCD comic illustrates the fragility of what we just assume will still work next year: https:
//xkcd.com/1909/.

Nüst ERC Web service | July 8, 2021 | 1580

declining availability already for data (Vines et al., 2014).
Peng (2017) suggests to introduce limiting principles

so that practical implications do not break the idea re-
producibility. He discusses the audience (Reproducible for
Whom?) and time span (For How Long?) and comes up
with the idea of an endowment for reproducible publica-
tions with an author pays model, which would fit grant-
based research because of a single payment. Peng’s back
of the napkin calculation for data storage of just 10GB
alone easily reaches costs higher than many of today’s
APCs. The same considerations need to be explored for
ERCs, and reasonable limits may very well be required
for a widespread adoption.

6.5. ERCs in the spotlight. In this section, we critically dis-
cuss the ERC concept and the ERS implementation against
a number of scales and terms for reproducibility. The clas-
sifications are ordered by year of publication and stem
from all scientific disciplines.

Vandewalle et al. (2009) distinguish six degrees of repro-
ducibility, of which an ERC could reach the highest level,
5, because an independent researcher can use the ERS as
a free tool and with minimal effort. The requirement to
spend “at most 15 min”, however, depends on the pack-
aged data and method, and the author’s decision whether
to package a reduced example or not.

Peng (2011) defines the spectrum of reproducibility as
ranging from the irreproducible “publication only” to a
gold standard of fully linked executable code and data.
The ERC reaches the gold standard. When code and data
are linked and executable, one may zoom into the spec-
trum and define a spectrum of executability within the
highly reproducible workflows. This position on this sub-
spectrum is determined through time since ERC creation,
workflow complexity, and reviewers expertise—all at the
same time. In practice, the executability may at a min-
imum start with a README file, which puts the high-
est burden on the reviewer. Increasingly more accessible
practices would be a computational notebook, a research
compendium, and finally an ERC, which puts increasing
burden on the author while easing executability for the
reviewer.

Gavish and Donoho (2012) describe three “Dream Ap-
plications” that would be possible if verifiable computa-
tional research (VCR) would be adopted. The ERC en-
ables all three applications. It indirectly supports Search
for research that uses a specific dataset or code and Amal-
gate for fusioning data and results, as data, code, and re-
sults are contained and could be indexed. The UI bindings
and the substitution mechanism are a realisation of the
Tweak application to interact and experiment with com-
putational results.

Zhao et al. (2012) investigate decay of computational
workflows over time regarding their re-execution and re-
production. They classify causes for workflow decay into
four categories, all of which can be mitigated effectively
by the ERC (as well as by their own tool). The ERC
prohibits volatile third-party resources, missing example
data, missing execution environment, and insufficient de-
scriptions about workflows, because of the captured build-

ing blocks and self-containedness.
Stodden et al. (2013) devised a five-level taxonomy for

computational research, classifying it as reviewable, repli-
cable, confirmable, auditable, and open/reproducible.
They also define the terms verification and validation. Re-
search published as an ERC reaches the highest level of
open and reproducible research, because it demands full
openness for a fully available auditable workflow, and pro-
vides verification, because it allows to check if there are no
errors in the code, and is thereby a support for validation
by other researchers.

Thain et al. (2015) describe techniques for keeping
software and computing environments executable and list
a number of objectives for digital preservation. These
techniques are presented between the two extremes of
“preserving the mess” and “encouraging cleanliness”. We
place the ERC between those extremes. The outside pack-
aging is quite clean for the execution of the full workflow,
and UI bindings document some configurable parameters,
however, the ERC is far from the details captured by work-
flow engines such as Umbrella (Meng and Thain, 2015) or
Taverna (Wolstencroft et al., 2013). The automated cre-
ation of containers for the runtime environment mitigates
some of the shortcomings Thain et al. describe for virtual
machines and container technology as “messy”, but the
ERC cannot capture distributed systems (machines, file
systems). Regarding the preservation objectives, the ERC
focuses on the Identical Verification verifying the same soft-
ware and data lead to the same results. The execution
within the ERS also realises a New Environment Verifica-
tion, especially if the author does not provide a recipe for
the inner container. The ERS does not allow to update the
computing environment for New Software Verification, but
the substitution can, within limits, be used for Extension
to New Data respectively .. New Software.

Benureau and Rougier (2018) define five ordered char-
acteristics for useful code in a scientific publication: it
should be re-runnable, repeatable, reproducible, reusable,
and replicable. The ERC can fulfil all these require-
ments through its self-contained yet transparent proper-
ties, though the author must still carefully set-up a work-
flow to not fall into any traps, e.g., with randomness, and
enable reuse, e.g., with documentation, modularisation,
or ease of configuration. The characteristics are achieved
in part because different parties execute the code, the au-
thor and the ERS, and the ERS is designed for peer re-
view processes, providing more eyes on the code and data.
The ERC surely provides the details that are often missing
from the manuscript itself and can thereby support repli-
cation.

Chen et al. (2019) define Guiding principles towards
reproducibility for individual researchers or research
groups, but the principles are transferable to a repro-
ducibility infrastructure. The ERC clearly defines a repro-
ducibility goal: package a workflow so that it can enable
evaluation during peer review. However, it does not re-
quired incorporate best practices early, as it only requires
a reproducible workflow at the time of submission, and
admittedly creates a new platform instead of extending
existing ones to be able to innovate. One would hope

16 | https://doi.org/10.5281/zenodo.4818120 Nüst81

though that the expectation to submit an ERC should lead
to adopting reproducibility practices early in projects. The
ERC and ERS do require structure to make knowledge
both human and machine readable and capture content
and workflows well. The last three principles are rather
cultural goals that could be pursued with the help of ERC
and ERS.

Oliveira et al. (2020) describe an approach to evalu-
ate software systems for reproducible software artefacts.
Their reproducibility pyramid has 7 levels in three main
categories: accessibility, executability, and interactive.
The ERC and ERS enable all these levels, though only only
binaries of the runtime environment are preserved in the
inner container, which Oliveira et al. see as a risk, and the
interactivity is focused on UI bindings and substitution,
but does not provide a full development environment.

7. Conclusion & future work

The functionality of ERCs and the connection with cru-
cial parts for scientific infrastructure has been demon-
strated based on the reproducibility service and selected
workflows. The user interface and service implementa-
tion can lower the barriers to share snapshots of research
workflows for review and reading, and they can be inte-
grated in a scholarly publication process. At least the arte-
facts of a reproducibility package can be preserved, for
a time frame suitable to improve understanding and col-
laboration of relatively recently published results. ERCs
and the designed infrastructure could also be connected
to more radical changes in publishing practices. For ex-
ample, piecemeal publication, review and publishing ap-
proaches like Octopus (Octopus team, 2020) and other
evolutions in academic publishing (Tennant et al., 2019),
disruptive ways to distribute and review research such as
Academic Torrents (Cohen and Lo, 2014) or overlay jour-
nals (Brown, 2010), and also novel ways of presenting,
collaborating, and interacting with research outputs (Kray
et al., 2019). It remains to be seen if the technical and or-
ganisational innovations can benefit from each other or
are better introduced successively.

However, a broad uptake was not achieved yet and
the open research challenges summarised a few years ago
by Freire et al. (2016) and Thain et al. (2015) are far
from being answered today, though the ERS and ERC can
contribute to addressing them. The slow pace of change
can attributed to the many moving parts for adopting to
more reproducible and transparent, such as author guide-
lines, researcher skills, editorial and review procedures,
and publishing systems. This makes it really challeng-
ing for publishers to innovate, though their options to
promote reproducibility are widely discussed (e.g., Hry-
naszkiewicz, 2020; Eglen et al., 2018). However, existing
pilots yield promising results with a strong institutional
support (Guizzardi et al., 2021; Hawkins, 2019). The
complexity of cultural change also slows down seemingly
small but possibly impactful changes, such as establishing
“reproducibility package” a first level citizen or type of re-
search output in databases such as CrossRef or reposito-
ries such as Zenodo. This would give recognition and aide
discovery of both data and software. Nevertheless, the

presented software does provide a basis for further testing
with stakeholders, as to improve the understanding of the
remaining barriers for individuals (e.g., authors, review-
ers, editors) and organisations (e.g, publishers, scholarly
societies, scientific communities). The technical solutions
for reproducible publications and transparent reviews can
thereby help to support change in community practices
and norms. These tests can go hand in hand with other
solutions to supersede PDF papers, such as peer-reviewed
Jupyter Notebooks32, and with support offerings for repro-
ducible research, e.g., by academic libraries (Sayre and
Riegelman, 2019).

With respect to the further development of the tech-
nologies, the o2r project aims to realise a tight integration
of the ERC with Open Journal Systems33 (OJS). Usage in
other publishing software platforms would strengthen the
validation of the concepts and implementation, however,
a more realistic step-by-step approach could be to use
ERCs in specialised workflow review and execution pro-
cesses as part of “regular” peer review (Nüst and Eglen,
2021). For a scalable infrastructure, existing tools for
orchestration of ERC creation and examination sessions,
such as Kubernetes (Wikipedia contributors, 2021d) or
BinderHub (Project Jupyter et al., 2018), could be used
thanks to the fully containerised approach of both the re-
producibility service implementation and the runtime en-
vironment of the ERC. While all specifications and imple-
mentations of the ERC Web service are open, the creation
of reusable tools in different languages to more directly
work with ERCs, e.g., validation and inspection functions
in R or Python, and finding external collaborators to im-
prove the specifications, e.g., by creating a formal schema
file for the ERC configuration file format, would benefit
uptake and usability for developers.

The biggest barrier remains the question of who
takes responsibility to enable and finance computa-
tional reproducibility for scientific papers by providing
infrastructure—a problem that is not even solved for fi-
nancing possibly less dynamic and demanding infrastruc-
tures for data (Tennant et al., 2019; Nature Editorial,
2017). There is a need to better integrate different re-
search outputs and to convince funders and journals that
they should request and better support openness and re-
producibility as defaults (EOSC Executive Board Work-
ing Group (WG) Architecture Task Force (TF) SIRS, 2020;
Porubsky et al., 2021)—ERC and ERS can facilitate such
goals. Is infrastructure for computational reproducibil-
ity a service offered by publishers as part of their busi-
ness model, or will readers pay with every execution? If
readily usable computing resources are given, it will be-
come relevant to understand working practices on code
execution during peer review (Nüst et al., 2021). The
increased openness and a growing number of individual
practitioners as well as local to international initiatives
around open science and reproducibility are promising
drivers so that an open community-owned research in-

32https://www.earthcube.org/notebooks
33See blog post at https://o2r.info/2020/02/26/OJS-workshop-HD/.

Nüst ERC Web service | July 8, 2021 | 1782

frastructures will eventually strive34. “Transparency can
improve our practices even if no one actually looks, simply
because we know that someone could look.” (Nosek et al.,
2012) Packaging research workflows and outputs as Exe-
cutable Research Compendia can enhance existing scien-
tific practices by eventually enabling infrastructures pro-
viding transparency, reproducibility, and reusability.

Acknowledgments. This work is supported by the project
Opening Reproducible Research (o2r, o2r.info) funded by the
German Research Foundation (DFG) under project numbers
PE 1632/10-1, KR 3930/3-1 and TR 864/6-1 for phase 1 and
PE 1632/17-1, KR 3930/8-1, and TR 864/12-1 for phase 2. We
thank Edzer Pebesma for repeated feedback on this manuscript.
The ideas and implementations presented in this article are
based on the work of the whole o2r team: Markus Konkol, Marc
Schutzeichel, Edzer Pebesma, Christian Kray, Holger Przibytzin,
Jörg Lorenz, Rehan Chaudhary, Fabian Fermazin, Philipp Glahe,
Juan Sebastian Garzón Alvarado, Laura Goulier, Matthias Hinz,
Nick Jakuschona, Jan Koppe, Timm Kühnel, Torben Kraft, Lukas
Lohoff, Tom Niers, Jan Suleiman, Yousef Qamaz. On top of that,
the great online communities of Open Science and Reproducible
Research have inspired and directly shaped many of the ideas in
this work; we have tried to diligently record origins of earlier
ideas and parallel developments.

References
Akhlaghi M, Infante-Sainz R, Roukema BF, Khellat M, Valls-Gabaud D,

Baena-Gallé R (2021). “Toward Long-Term and Archivable Reproducibil-
ity.” Computing in Science Engineering, 23(3), 82–91. ISSN 1558-366X.
doi:10.1109/MCSE.2021.3072860. Conference Name: Computing
in Science Engineering.

Allaire J, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H,
Cheng J, Chang W, Iannone R (2021a). rmarkdown: Dynamic Documents
for R. R package version 2.8, URL https://github.com/rstudio/rmarkdown.

Allaire J, Xie Y, R Foundation, Wickham H, Journal of Statistical Software,
Vaidyanathan R, Association for Computing Machinery, Boettiger C, El-
sevier, Broman K, Mueller K, Quast B, Pruim R, Marwick B, Wickham C,
Keyes O, Yu M, Emaasit D, Onkelinx T, Gasparini A, Desautels MA, Leut-
nant D, MDPI, Taylor and Francis, Öreden O, Hance D, Nüst D, Uvesten
P, Campitelli E, Muschelli J, Hayes A, Kamvar ZN, Ross N, Cannoodt R,
Luguern D, Kaplan DM, Kreutzer S, Wang S, Hesselberth J, Dervieux C
(2021b). rticles: Article Formats for R Markdown. R package version 0.20,
URL https://CRAN.R-project.org/package=rticles.

Appel M, Lahn F, Buytaert W, Pebesma E (2018). “Open and scal-
able analytics of large Earth observation datasets: From scenes to
multidimensional arrays using SciDB and GDAL.” ISPRS Journal
of Photogrammetry and Remote Sensing, 138, 47–56. ISSN 0924-
2716. doi:10.1016/j.isprsjprs.2018.01.014. URL https://
www.sciencedirect.com/science/article/pii/S0924271617300898.

Auer S, Haelterman N, Weissgerber T, Erlich JC, Susilaradeya D, Julkowska
M, Gazda MA, Abitua A, Niraulu A, Shah A, Clyburne-Sherin A, Guiquel
B, Alicea B, LaManna C, Ganguly D, Perkins EJ, Jambor H, Li IMH,
Tsang J, Kamens J, Teytelman L, Paul M, Phuyal S, Schmelling N,
Crisp P, Sarabipour S, Roy S, Bachle S, Tran MTK, Ford T, Steeves
V, Ilangovan V, Schwessinger B, Jadavji N (2020). “Reproducibility
for Everyone: A Community-Led Initiative with Global Reach in Repro-
ducible Research Training.” Technical report, OSF Preprints. doi:
10.31219/osf.io/dxw67.

Benureau FCY, Rougier NP (2018). “Re-run, Repeat, Reproduce,
Reuse, Replicate: Transforming Code into Scientific Contributions.”

34For example, Repro4Everyone (https://repro4everyone.org/, Auer et al., 2020), ReproHacks (https://
reprohack.github.io/reprohack-hq/), and The Turing Way (https://www.turing.ac.uk/research/research-
projects/turing-way-handbook-reproducible-data-science) on educating researchers, Invest in Open
Infrastructure (IOI, https://investinopen.org/) for funding community-owned open technologies and sys-
tems for research and scholarship, or novel priorities and processes in funding schemes (Cruz and
de Jonge, 2020).

Frontiers in Neuroinformatics, 11. ISSN 1662-5196. doi:
10.3389/fninf.2017.00069.

Boettiger C (2015). “An Introduction to Docker for Reproducible Research.”
SIGOPS Oper. Syst. Rev., 49(1), 71–79. ISSN 0163-5980. doi:
10.1145/2723872.2723882.

Bouffler B (2019). “Keynote: Delivering on the promise of Research Comput-
ing.” Gesellschaft für Informatik e.V. in TIB AV-PORTAL. https://doi.org/
10.5446/42484#t=15:31,16:20 (time stamp 15:31; last accessed: 31 May
2021).

Brammer GR, Crosby RW, Matthews SJ, Williams TL (2011). “Paper Mâché:
Creating Dynamic Reproducible Science.” Procedia Computer Science, 4,
658–667. ISSN 1877-0509. doi:10.1016/j.procs.2011.04.069.

Brown J (2010). “An introduction to overlay journals.” Report, Repositories
Support Project, UK. URL https://discovery.ucl.ac.uk/id/eprint/19081/.

Buckheit JB, Donoho DL (1995). “WaveLab and Reproducible Re-
search.” In A Antoniadis, G Oppenheim (eds.), Wavelets and Statis-
tics, number 103 in Lecture Notes in Statistics, pp. 55–81. Springer
New York. ISBN 978-0-387-94564-4 978-1-4612-2544-7. doi:
10.1007/978-1-4612-2544-7_5.

Castleberry DG, Brandt SR, Löffler F (2013). “Inkling: An Executable
Paper System for Reviewing Scientific Applications.” In 2013 In-
ternational Conference on Social Computing, pp. 917–922. doi:
10.1109/SocialCom.2013.142.

Chard K, Gaffney N, Jones MB, Kowalik K, Ludäscher B, McPhillips T,
Nabrzyski J, Stodden V, Taylor I, Thelen T, Turk MJ, Willis C (2019).
“Application of BagIt-Serialized Research Object Bundles for Packag-
ing and Re-Execution of Computational Analyses.” In 2019 15th In-
ternational Conference on eScience (eScience), pp. 514–521. doi:
10.1109/eScience.2019.00068.

Chen X, Dallmeier-Tiessen S, Dasler R, Feger S, Fokianos P, Gonzalez JB,
Hirvonsalo H, Kousidis D, Lavasa A, Mele S, Rodriguez DR, imko T, Smith
T, Trisovic A, Trzcinska A, Tsanaktsidis I, Zimmermann M, Cranmer K,
Heinrich L, Watts G, Hildreth M, Iglesias LL, Lassila-Perini K, Neubert S
(2019). “Open is not enough.” Nature Physics, 15(2), 113. ISSN 1745-
2481. doi:10.1038/s41567-018-0342-2.

Chirigati F, Rampin R, Shasha D, Freire J (2016). “ReproZip: Compu-
tational Reproducibility With Ease.” In Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD ’16, pp. 2085–
2088. ACM, New York, NY, USA. ISBN 978-1-4503-3531-7. doi:
10.1145/2882903.2899401.

Chuah J, Deeds M, Malik T, Choi Y, Goodall JL (2020). “Documenting Com-
puting Environments for Reproducible Experiments.” Parallel Computing:
Technology Trends, pp. 756–765. doi:10.3233/APC200106. Publisher:
IOS Press.

Cohen JP, Lo HZ (2014). “Academic Torrents: A Community-Maintained Dis-
tributed Repository.” In Proceedings of the 2014 Annual Conference on
Extreme Science and Engineering Discovery Environment - XSEDE ’14,
pp. 1–2. ACM Press, Atlanta, GA, USA. ISBN 978-1-4503-2893-7. doi:
10.1145/2616498.2616528.

Cruz M, de Jonge H (2020). “Beyond mandates: For open science to become
a norm, it must be recognised and rewarded.” URL https://blogs.lse.ac.uk/
impactofsocialsciences/2020/12/01/beyond-mandates-for-open-science-
to-become-a-norm-it-must-be-recognised-and-rewarded/.

Davenport JH, Grant J, Jones CM (2020). “Data Without Software Are Just
Numbers.” Data Science Journal, 19(1), 3. ISSN 1683-1470. doi:
10.5334/dsj-2020-003. URL http://datascience.codata.org/articles/
10.5334/dsj-2020-003/.

David CH, Gil Y, Duffy CJ, Peckham SD, Venayagamoorthy SK (2016). “An
introduction to the special issue on Geoscience Papers of the Future.”
Earth and Space Science, 3(10), 2016EA000201. ISSN 2333-5084. doi:
10.1002/2016EA000201.

Davison A (2012). “Automated Capture of Experiment Context for Easier Re-
producibility in Computational Research.” Computing in Science Engineer-
ing, 14(4), 48–56. ISSN 1521-9615. doi:10.1109/MCSE.2012.41.

Davison AP, Mattioni M, Samarkanov D, Telenczuk B (2014). “Sumatra: A
Toolkit for Reproducible Research.” In V Stodden, F Leisch, RD Peng
(eds.), Implementing Reproducible Research, Chapman & Hall/CRC The
R Series, p. 448. Taylor & Francis. ISBN 978-1-4665-6159-5.

Docker Inc (2019). “Overview of Docker Compose.” URL https://
docs.docker.com/compose/.

Díaz L, Granell C, Gould M, Olaya V (2008). “An open service network for
geospatial data processing.” In Proceedings of the academic track of the

18 | https://doi.org/10.5281/zenodo.4818120 Nüst83

2008 Free and Open Source Software for Geospatial (FOSS4G) Confer-
ence, pp. 410–420. Cape Town, South Africa. ISBN 978-0-620-42117-1.
URL https://www.researchgate.net/profile/Laura-Diaz-75/publication/
228655946_An_open_service_network_for_geospatial_data_processing/
links/0deec5195f4bdb0f86000000/An-open-service-network-for-
geospatial-data-processing.pdf.

Eglen SJ, Mounce R, Gatto L, Currie AM, Nobis Y (2018). “Recent devel-
opments in scholarly publishing to improve research practices in the life
sciences.” Emerging Topics in Life Sciences, 2(6), 775–778. ISSN 2397-
8554, 2397-8562. doi:10.1042/ETLS20180172.

Emsley I, De Roure D (2018). “A Framework for the Preservation of a Docker
Container | International Journal of Digital Curation.” International Journal
of Digital Curation, 12(2). doi:10.2218/ijdc.v12i2.509.

EOSC Executive Board Working Group (WG) Architecture Task Force (TF)
SIRS (2020). “Scholarly infrastructures for research software: report from
the EOSC Executive Board Working Group (WG) Architecture Task Force
(TF) SIRS.” Technical report, Edited by the EOSC Executive Board. doi:
10.2777/28598.

Executable Books Community (2020). “Jupyter Book.” doi:
10.5281/zenodo.4539666.

Frantz D (2019). “FORCELandsat + Sentinel-2 Analysis Ready Data and
Beyond.” Remote Sensing, 11(9), 1124. doi:10.3390/rs11091124.

Freire J, Fuhr N, Rauber A (2016). “Reproducibility of Data-Oriented Exper-
iments in e-Science (Dagstuhl Seminar 16041).” Dagstuhl Reports, 6(1),
108–159. ISSN 2192-5283. doi:10.4230/DagRep.6.1.108.

Gavish M, Donoho D (2012). “Three Dream Applications of Verifiable Compu-
tational Results.” Computing in Science Engineering, 14(4), 26–31. ISSN
1558-366X. doi:10.1109/MCSE.2012.65. Conference Name: Com-
puting in Science Engineering.

Gentleman R, Lang DT (2007). “Statistical Analyses and Reproducible Re-
search.” Journal of Computational and Graphical Statistics, 16(1), 1–23.
ISSN 1061-8600. doi:10.1198/106186007X178663.

Ghoshal D, Bianchi L, Essiari A, Beach M, Paine D, Ramakrishnan L
(2021). “Science Capsule - Capturing the Data Life Cycle.” Jour-
nal of Open Source Software, 6(62), 2484. ISSN 2475-9066. doi:
10.21105/joss.02484. URL https://joss.theoj.org/papers/10.21105/
joss.02484.

Gil Y, David C, Demir I, Essawy B, Fulweiler R, Goodall J, Karlstrom L, Lee
H, Mills H, Oh J, Pierce S, Pope A, Tzeng M, Villamizar S, Yu X (2016).
“Toward the Geoscience Paper of the Future: Best practices for document-
ing and sharing research from data to software to provenance.” Earth and
Space Science, 3(10), 2015EA000136. doi:10.1002/2015EA000136.

Glatard T, Kiar G, Aumentado-Armstrong T, Beck N, Bellec P, Bernard R,
Bonnet A, Brown ST, Camarasu-Pop S, Cervenansky F, Das S, Ferreira
da Silva R, Flandin G, Girard P, Gorgolewski KJ, Guttmann CRG, Hayot-
Sasson V, Quirion PO, Rioux P, Rousseau MÉ, Evans AC (2018). “Bou-
tiques: A Flexible Framework to Integrate Command-Line Applications in
Computing Platforms.” GigaScience, 7(giy016). ISSN 2047-217X. doi:
10.1093/gigascience/giy016.

González Ávalos E (2020). “Good overall quality, additional discussion on cer-
tain points would be desirable.” other, Geosciences Marine Geology/essd-
2020-22. doi:10.5194/essd-2020-22-RC1.

Gronenschild E, Habets P, Jacobs H, Mengelers R, Rozendaal N, van Os
J, Marcelis M (2012). “The effects of FreeSurfer version, workstation
type, and Macintosh operating system version on anatomical volume
and cortical thickness measurements.” PLoS One, 7(6), e38234. doi:
10.1371/journal.pone.0038234.

Guizzardi G, Bentley N, Maciocci G (2021). “Announcing the next phase
of Executable Research Articles.” Publisher: eLife Sciences Publica-
tions Limited, URL https://elifesciences.org/labs/a04d2b80/announcing-
the-next-phase-of-executable-research-articles.

Hardt D (2012). “The OAuth 2.0 Authorization Framework.” RFC 6749. doi:
10.17487/RFC6749. URL https://rfc-editor.org/rfc/rfc6749.txt.

Hardwicke TE, Mathur MB, MacDonald K, Nilsonne G, Banks GC, Kidwell MC,
Mohr AH, Clayton E, Yoon EJ, Tessler MH, Lenne RL, Altman S, Long B,
Frank MC (2018). “Data Availability, Reusability, and Analytic Reproducibil-
ity: Evaluating the Impact of a Mandatory Open Data Policy at the Journal
Cognition.” Royal Society Open Science, 5(8), 180448. ISSN 2054-5703.
doi:10.1098/rsos.180448.

Hawkins E (2019). “What we have learnt testing container-platforms for
peer review and publication of code : Of Schemes and Memes Blog.”
URL http://blogs.nature.com/ofschemesandmemes/2019/10/09/what-we-

have-learnt-testing-container-platforms-for-peer-review-and-publication-
of-code.

Haydel N, Madey G, Gesing S, Dakkak A, de Gonzalo SG, Taylor I, Hwu
WmW (2015). “Enhancing the usability and utilization of accelerated ar-
chitectures via docker.” In Proceedings of the 8th International Conference
on Utility and Cloud Computing, UCC ’15, pp. 361–367. IEEE Press, Li-
massol, Cyprus. ISBN 978-0-7695-5697-0.

Heroux MA (2015). “Editorial: ACM TOMS Replicated Computational Results
Initiative.” ACM Transactions on Mathematical Software, 41(3), 13:1–13:5.
ISSN 0098-3500. doi:10.1145/2743015.

Hinsen K (2015). “ActivePapers: a platform for publishing and archiving
computer-aided research.” F1000Research, 3, 289. ISSN 2046-1402.
doi:10.12688/f1000research.5773.3.

Hinsen K (2018). “Verifiability in computer-aided research: the role of digital
scientific notations at the human-computer interface.” PeerJ Computer
Science, 4, e158. ISSN 2376-5992. doi:10.7717/peerj-cs.158.

Hrynaszkiewicz I (2020). “Publishers Responsibilities in Promoting Data
Quality and Reproducibility.” In A Bespalov, MC Michel, T Steck-
ler (eds.), Good Research Practice in Non-Clinical Pharmacology and
Biomedicine, Handbook of Experimental Pharmacology, pp. 319–348.
Springer International Publishing, Cham. ISBN 978-3-030-33656-1. doi:
10.1007/164_2019_290.

Jimenez I, Sevilla M, Watkins N, Maltzahn C, Lofstead J, Mohror K, Arpaci-
Dusseau A, Arpaci-Dusseau R (2017). “The Popper Convention: Making
Reproducible Systems Evaluation Practical.” In 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 1561–1570. doi:10.1109/IPDPSW.2017.157.

Katz DS, Chue Hong NP, Clark T, Muench A, Stall S, Bouquin D, Cannon
M, Edmunds S, Faez T, Feeney P, Fenner M, Friedman M, Grenier G,
Harrison M, Heber J, Leary A, MacCallum C, Murray H, Pastrana E, Perry
K, Schuster D, Stockhause M, Yeston J (2021). “Recognizing the value
of software: a software citation guide.” F1000Research, 9, 1257. ISSN
2046-1402. doi:10.12688/f1000research.26932.2.

Knuth DE (1984). “Literate Programming.” Comput. J., 27(2), 97–111. ISSN
0010-4620. doi:10.1093/comjnl/27.2.97.

Konkol M, Kray C, Pfeiffer M (2019a). “Computational reproducibility in
geoscientific papers: Insights from a series of studies with geoscien-
tists and a reproduction study.” International Journal of Geographi-
cal Information Science, 33(2), 408–429. ISSN 1365-8816. doi:
10.1080/13658816.2018.1508687.

Konkol M, Kray C, Suleiman J (2019b). “Creating Interactive Scientific Pub-
lications Using Bindings.” Proceedings of the ACM on Human-Computer
Interaction, 3(EICS), 16:1–16:18. doi:10.1145/3331158.

Konkol M, Nüst D, Goulier L (2020). “Publishing computational research - a
review of infrastructures for reproducible and transparent scholarly com-
munication.” Research Integrity and Peer Review, 5(1), 10. ISSN 2058-
8615. doi:10.1186/s41073-020-00095-y.

Kray C, Pebesma E, Konkol M, Nüst D (2019). “Reproducible Research
in Geoinformatics: Concepts, Challenges and Benefits (Vision Pa-
per).” volume 142 of Leibniz International Proceedings in Informatics
(LIPIcs), p. 8:1–8:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany. doi:10.4230/LIPIcs.COSIT.2019.8. URL
http://drops.dagstuhl.de/opus/volltexte/2019/11100.

Kunze JA, Littman J, Madden L, Scancella J, Adams C (2018). “The BagIt
File Packaging Format (V1.0).” RFC 8493. doi:10.17487/RFC8493.
URL https://rfc-editor.org/rfc/rfc8493.txt.

Liu DM, Salganik MJ (2019). “Successes and Struggles with Com-
putational Reproducibility: Lessons from the Fragile Families Chal-
lenge.” Socius, 5, 2378023119849803. ISSN 2378-0231. doi:
10.1177/2378023119849803.

Marwick B (2015). “How Computers Broke Science – and What We Can Do
to Fix It.” http://theconversation.com/how-computers-broke-science-and-
what-we-can-do-to-fix-it-49938.

Marwick B, Pilaar Birch SE (2018). “How researchers can solve
the bottle-opener problem with compute capsules.” URL https:
//www.cambridge.org/core/blog/2018/07/30/how-researchers-can-solve-
the-bottle-opener-problem-with-compute-capsules/.

Mecum B, Jones MB, Vieglais D, Willis C (2018). “Preserving Reproducibility:
Provenance and Executable Containers in DataONE Data Packages.” In
2018 IEEE 14th International Conference on E-Science (e-Science), pp.
45–49. ISSN null. doi:10.1109/eScience.2018.00019.

Meng H, Thain D (2015). “Umbrella: A Portable Environment Creator for

Nüst ERC Web service | July 8, 2021 | 1984

Reproducible Computing on Clusters, Clouds, and Grids.” In Proceed-
ings of the 8th International Workshop on Virtualization Technologies in
Distributed Computing, VTDC ’15, pp. 23–30. ACM, New York, NY, USA.
ISBN 978-1-4503-3573-7. doi:10.1145/2755979.2755982.

Miller G (2006). “A Scientist’s Nightmare: Software Problem Leads to Five
Retractions.” Science, 314(5807), 1856–1857. ISSN 0036-8075, 1095-
9203. doi:10.1126/science.314.5807.1856.

Minghini M, Mobasheri A, Rautenbach V, Brovelli MA (2020). “Geospa-
tial openness: from software to standards & data.” Open Geospa-
tial Data, Software and Standards, 5(1), 1. ISSN 2363-7501. doi:
10.1186/s40965-020-0074-y.

Molenaar G, Makhathini S, Girard JN, Smirnov O (2018). “KlikoThe scientific
compute container format.” Astronomy and Computing, 25, 1–9. ISSN
2213-1337. doi:10.1016/j.ascom.2018.08.003.

Nature Editorial (2017). “Empty rhetoric over data sharing slows science.”
Nature News, 546(7658), 327. doi:10.1038/546327a.

Nosek BA, Spies JR, Motyl M (2012). “Scientific Utopia II. Restructuring In-
centives and Practices to Promote Truth Over Publishability.” Perspectives
on Psychological Science, 7(6), 615–631. ISSN 1745-6916, 1745-6924.
doi:10.1177/1745691612459058.

Nüst D, Granell C, Hofer B, Konkol M, Ostermann FO, Sileryte R, Cerutti
V (2018). “Reproducible Research and GIScience: An Evaluation Using
AGILE Conference Papers.” PeerJ, 6, e5072. ISSN 2167-8359. doi:
10.7717/peerj.5072.

Nüst D, Pebesma E (2020). “Practical Reproducibility in Geography and Geo-
sciences.” Annals of the American Association of Geographers, 111(5),
1–11. doi:10.1080/24694452.2020.1806028.

Nüst D (2018). “Reproducibility Service for Executable Research Compendia:
Technical Specifications and Reference Implementation.” Technical report.
doi:10.5281/zenodo.2203843.

Nüst D, Eglen S (2021). “CODECHECK: an Open Science initiative for the in-
dependent execution of computations underlying research articles during
peer review to improve reproducibility.” F1000Research, 10, 253. doi:
10.12688/f1000research.51738.1.

Nüst D, Hinz M (2019). “containerit: Generating Dockerfiles for reproducible
research with R.” Journal of Open Source Software, 4(40), 1603. doi:
10.21105/joss.01603.

Nüst D, Konkol M, Pebesma E, Kray C, Schutzeichel M, Przibytzin H,
Lorenz J (2017). “Opening the Publication Process with Executable Re-
search Compendia.” D-Lib Magazine, 23(1/2). ISSN 1082-9873. doi:
10.1045/january2017-nuest.

Nüst D, Schutzeichel M (2017). “An Architecture for Reproducible Compu-
tational Geosciences.” In Poster abstracts of AGILE 2017. Wageningen,
The Netherlands. doi:10.5281/zenodo.1478542.

Nüst D, Seibold H, Eglen S, Schulz-Vanheyden L (2021). “Code Execution in
Peer Review.” doi:10.17605/osf.io/x32nc.

Nüst D, Sochat V, Marwick B, Eglen SJ, Head T, Hirst T, Evans BD (2020).
“Ten simple rules for writing Dockerfiles for reproducible data science.”
PLOS Computational Biology, 16(11), e1008316. ISSN 1553-7358. doi:
10.1371/journal.pcbi.1008316.

Octopus team (2020). “More about Octopus.” URL https://science-
octopus.org/about.

Oliveira L, Wilkinson D, Mossé D, Childers B (2018). “Supporting Long-
term Reproducible Software Execution.” In Proceedings of the First
International Workshop on Practical Reproducible Evaluation of Com-
puter Systems, P-RECS’18, pp. 1–6. Association for Computing Ma-
chinery, New York, NY, USA. ISBN 978-1-4503-5861-3. doi:
10.1145/3214239.3214245.

Oliveira L, Wilkinson D, Mossé D, Childers BR (2020). “Stimulating Re-
producible Software Artifacts.” In Proceedings of the 3rd International
Workshop on Practical Reproducible Evaluation of Computer Systems, P-
RECS ’20, pp. 3–7. Association for Computing Machinery, New York, NY,
USA. ISBN 978-1-4503-7977-9. doi:10.1145/3391800.3398177.

Pasquier T, Lau MK, Han X, Fong E, Lerner BS, Boose ER, Crosas M, Ellison
AM, Seltzer M (2018). “Sharing and Preserving Computational Analyses
for Posterity with encapsulator.” Computing in Science Engineering, 20(4),
111–124. ISSN 1558-366X. doi:10.1109/MCSE.2018.042781334.

Pebesma E (2013). “Earth and Planetary Innovation Challenge (EPIC)
submission "One-Click-Reproduce".” URL http://pebesma.staff.ifgi.de/
epic.pdf.

Peer L, Orr LV, Coppock A (2021). “Active Maintenance: A Proposal
for the Long-Term Computational Reproducibility of Scientific Results.”

PS: Political Science & Politics, pp. 1–5. ISSN 1049-0965, 1537-5935.
doi:10.1017/S1049096521000366. Publisher: Cambridge University
Press.

Peng R (2017). “Reproducible Research Needs Some Limiting Principles.”
URL https://simplystatistics.org/2017/02/01/reproducible-research-limits/.

Peng RD (2011). “Reproducible Research in Computational Science.” Sci-
ence, 334(6060), 1226–1227. ISSN 0036-8075, 1095-9203. doi:
10.1126/science.1213847.

Peng RD, Hicks SC (2021). “Reproducible Research: A Retrospective.” An-
nual Review of Public Health, 42(1), 79–93. ISSN 0163-7525. doi:
10.1146/annurev-publhealth-012420-105110.

Piwowar H (2013). “Value all research products.” Nature, 493, 159. doi:
10.1038/493159a.

Porubsky V, Smith L, Sauro HM (2021). “Publishing reproducible dynamic
kinetic models.” Briefings in Bioinformatics, 22(3). ISSN 1477-4054. doi:
10.1093/bib/bbaa152.

Project Jupyter, Bussonnier M, Forde J, Freeman J, Granger B, Head
T, Holdgraf C, Kelley K, Nalvarte G, Osheroff A, Pacer M, Panda Y,
Perez F, Ragan-Kelley B, Willing C (2018). “Binder 2.0 - Reproducible,
Interactive, Sharable Environments for Science at Scale.” Proceed-
ings of the 17th Python in Science Conference, pp. 113–120. doi:
10.25080/Majora-4af1f417-011.

Rechert K, Liebetraut T, Kombrink S, Wehrle D, Mocken S, Rohland M (2017).
“Preserving Containers.” In J Kratzke, V Heuveline (eds.), Forschungs-
daten managen, pp. 143–151. Heidelberg. ISBN 978-3-946531-75-3.
doi:10.11588/heibooks.285.377.

Ross N (2021). redoc: Reversible Reproducible Documents. R package
version 0.1.0.9000, URL https://github.com/noamross/redoc.

Sayre F, Riegelman A (2019). “Replicable Services for Reproducible Re-
search: A Model for Academic Libraries.” College & Research Libraries,
80(2), 260. doi:10.5860/crl.80.2.260.

Schramm M, Pebesma E, Milenkovi M, Foresta L, Dries J, Jacob A, Wagner
W, Mohr M, Neteler M, Kadunc M, Miksa T, Kempeneers P, Verbesselt
J, GöSSwein B, Navacchi C, Lippens S, Reiche J (2021). “The ope-
nEO APIHarmonising the Use of Earth Observation Cloud Services Using
Virtual Data Cube Functionalities.” Remote Sensing, 13(6), 1125. doi:
10.3390/rs13061125.

Stodden V, Bailey DH, Borwein J, LeVeque RJ, Rider B, Stein W
(2013). “Setting the Default to Reproducible: Reproducibility in
Computational and Experimental Mathematics.” Technical report,
The Institute for Computational and Experimental Research in Math-
ematics. Workshop website with full list of workshop participants:
https://icerm.brown.edu/topical_workshops/tw12-5-rcem/ This report was
developed collaboratively by the ICERM workshop participants, and
compiled and edited by the organizers., URL https://icerm.brown.edu/
topical_workshops/tw12-5-rcem/icerm_report.pdf.

Stodden V, Miguez S, Seiler J (2015). “ResearchCompendia.org: Cyberin-
frastructure for Reproducibility and Collaboration in Computational Sci-
ence.” Computing in Science & Engineering, 17(1), 12–19. ISSN 1521-
9615. doi:10.1109/MCSE.2015.18.

Stodden V, Seiler J, Ma Z (2018). “An empirical analysis of journal policy ef-
fectiveness for computational reproducibility.” Proceedings of the National
Academy of Sciences, 115(11), 2584–2589. ISSN 0027-8424, 1091-6490.
doi:10.1073/pnas.1708290115.

Tennant JP, Crane H, Crick T, Davila J, Enkhbayar A, Havemann J, Kramer
B, Martin R, Masuzzo P, Nobes A, Rice C, Rivera-López B, Ross-
Hellauer T, Sattler S, Thacker PD, Vanholsbeeck M (2019). “Ten Hot
Topics around Scholarly Publishing.” Publications, 7(2), 34. doi:
10.3390/publications7020034.

ter Riet G, Storosum BW, Zwinderman AH (2019). “What is repro-
ducibility?” F1000Research, 8, 36. ISSN 2046-1402. doi:
10.12688/f1000research.17615.1.

Thain D, Ivie P, Meng H (2015). “Techniques for Preserving Scientific Soft-
ware Executions: Preserve the Mess or Encourage Cleanliness?” In
Proceedings of the 12th International Conference on Digital Preservation
(iPres). doi:10.7274/R0CZ353M.

That DHT, Fils G, Yuan Z, Malik T (2017). “Sciunits: Reusable Research
Objects.” In 2017 IEEE 13th International Conference on e-Science (e-
Science), pp. 374–383. doi:10.1109/eScience.2017.51.

Vandewalle P, Kovacevic J, Vetterli M (2009). “Reproducible research in sig-
nal processing.” IEEE Signal Processing Magazine, 26(3), 37–47. ISSN
1053-5888, 1558-0792. doi:10.1109/MSP.2009.932122.

20 | https://doi.org/10.5281/zenodo.4818120 Nüst85

Vines T, Albert AK, Andrew R, Débarre F, Bock D, Franklin M, Gilbert K,
Moore JS, Renaut S, Rennison D (2014). “The Availability of Research
Data Declines Rapidly with Article Age.” Current Biology, 24(1), 94–97.
ISSN 0960-9822. doi:10.1016/j.cub.2013.11.014.

Whitehouse T (2019). “Making Reproducibility Reproducible.” URL
https://medium.com/gigantum/making-reproducibility-reproducible-
7457d656680c.

Wikipedia contributors (2021a). “AppArmor.” Page Version ID: 1027531383,
URL https://en.wikipedia.org/w/index.php?title=AppArmor&oldid=
1027531383.

Wikipedia contributors (2021b). “Bus factor.” Page Version ID: 1024613010,
URL https://en.wikipedia.org/w/index.php?title=Bus_factor&oldid=
1024613010.

Wikipedia contributors (2021c). “Docker (software).” Page Ver-
sion ID: 1019840030, URL https://en.wikipedia.org/w/index.php?title=
Docker_(software)&oldid=1019840030.

Wikipedia contributors (2021d). “Kubernetes.” Page Version ID: 1024839217,
URL https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=
1024839217.

Wikipedia contributors (2021e). “Make (software).” Page Ver-
sion ID: 1016565702, URL https://en.wikipedia.org/w/index.php?title=
Make_(software)&oldid=1016565702.

Wikipedia contributors (2021f). “OpenAPI Specification.” Page Ver-
sion ID: 1023136282, URL https://en.wikipedia.org/w/index.php?title=
OpenAPI_Specification&oldid=1023136282.

Wikipedia contributors (2021g). “Unix philosophy.” Page Ver-
sion ID: 1022001416, URL https://en.wikipedia.org/w/index.php?title=
Unix_philosophy&oldid=1022001416.

Wikipedia contributors (2021h). “Vagrant (software).” Page Ver-
sion ID: 1014463164, URL https://en.wikipedia.org/w/index.php?title=
Vagrant_(software)&oldid=1014463164.

Wikipedia contributors (2021i). “WebSocket.” Page Version ID: 1028455012,
URL https://en.wikipedia.org/w/index.php?title=WebSocket&oldid=
1028455012.

Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK
(2017). “Good enough practices in scientific computing.” PLOS
Computational Biology, 13(6), e1005510. ISSN 1553-7358. doi:
10.1371/journal.pcbi.1005510.

Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S,
Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame
K, Bacall F, Hardisty A, Hidalga ANdl, Vargas MPB, Sufi S, Goble C
(2013). “The Taverna workflow suite: designing and executing workflows
of Web Services on the desktop, web or in the cloud.” Nucleic Acids
Research, 41(W1), W557–W561. ISSN 0305-1048, 1362-4962. doi:
10.1093/nar/gkt328.

Xie Y, Allaire J, Grolemund G (2018). R Markdown: The Definitive Guide.
Chapman and Hall/CRC, Boca Raton, Florida. ISBN 9781138359338,
URL https://bookdown.org/yihui/rmarkdown.

Yan A, Huang C, Lee JS, Palmer CL (2020). “Cross-disciplinary data
practices in earth system science: Aligning services with reuse and
reproducibility priorities.” Proceedings of the Association for Informa-
tion Science and Technology, 57(1), e218. ISSN 2373-9231. doi:
https://doi.org/10.1002/pra2.218.

Youngdahl A, Ton-That DH, Malik T (2019). “SciInc: A Container Runtime
for Incremental Recomputation.” In 2019 15th International Conference
on eScience (eScience), pp. 291–300. IEEE, San Diego, CA, USA. ISBN
978-1-72812-451-3. doi:10.1109/eScience.2019.00040.

Zhao J, Gomez-Perez JM, Belhajjame K, Klyne G, Garcia-Cuesta E, Gar-
rido A, Hettne K, Roos M, De Roure D, Goble C (2012). “Why workflows
break Understanding and combating decay in Taverna workflows.” In
2012 IEEE 8th International Conference on E-Science, pp. 1–9. doi:
10.1109/eScience.2012.6404482.

imko T, Heinrich L, Hirvonsalo H, Kousidis D, Rodríguez D (2019).
“REANA: A System for Reusable Research Data Analyses.” EPJ
Web of Conferences, 214, 06034. ISSN 2100-014X. doi:
10.1051/epjconf/201921406034.

Nüst ERC Web service | July 8, 2021 | 2186

6 PublisHing computational researcH - a
review of infrastructures for
reproducible and transparent scHolarly
communication

Authors & contribution Markus Konkol, Daniel Nüst (15%), Laura Goulier

Venue Research Integrity and Peer Review 10.1186/s41073-020-00095-y

Date 10/2020

Licence Creative Commons Attribution 4.0 International (CC BY 4.0)

Repository https://github.com/o2r-project/reviewpaper

ERC https://o2r.uni-muenster.de/erc/dkYhi

87

https://doi.org/10.1186/s41073-020-00095-y
https://github.com/o2r-project/reviewpaper
https://o2r.uni-muenster.de/erc/dkYhi

REVIEW Open Access

Publishing computational research - a
review of infrastructures for reproducible
and transparent scholarly communication
Markus Konkol* , Daniel Nüst and Laura Goulier

Abstract

Background: The trend toward open science increases the pressure on authors to provide access to the source

code and data they used to compute the results reported in their scientific papers. Since sharing materials

reproducibly is challenging, several projects have developed solutions to support the release of executable analyses

alongside articles.

Methods: We reviewed 11 applications that can assist researchers in adhering to reproducibility principles. The

applications were found through a literature search and interactions with the reproducible research community. An

application was included in our analysis if it (i) was actively maintained at the time the data for this paper was

collected, (ii) supports the publication of executable code and data, (iii) is connected to the scholarly publication

process. By investigating the software documentation and published articles, we compared the applications across

19 criteria, such as deployment options and features that support authors in creating and readers in studying

executable papers.

Results: From the 11 applications, eight allow publishers to self-host the system for free, whereas three provide

paid services. Authors can submit an executable analysis using Jupyter Notebooks or R Markdown documents (10

applications support these formats). All approaches provide features to assist readers in studying the materials, e.g.,

one-click reproducible results or tools for manipulating the analysis parameters. Six applications allow for modifying

materials after publication.

Conclusions: The applications support authors to publish reproducible research predominantly with literate

programming. Concerning readers, most applications provide user interfaces to inspect and manipulate the

computational analysis. The next step is to investigate the gaps identified in this review, such as the costs

publishers have to expect when hosting an application, the consideration of sensitive data, and impacts on the

review process.

Keywords: Open reproducible research, Open science, Computational statistics, Scholarly communication

Background

In many scientific fields, the results of scientific articles

can be based on computations, e.g., a statistical analysis

implemented in R. For this type of research, publishing

the used source code and data to adhere to “open

reproducible research” (ORR) principles (i.e., public ac-

cess to the code and data underlying the reported results

[1]) seems simple. Nevertheless, several studies have

concluded that papers rarely include or link to these ma-

terials [2, 3]. Reasons for that are manifold:

First, due to technical challenges, e.g., capturing the

analyst’s original computational environment, even

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: m.konkol@uni-muenster.de

Institute for Geoinformatics, University of Münster, Münster, Germany

Research Integrity and
 Peer Review

Konkol et al. Research Integrity and Peer Review (2020) 5:10

https://doi.org/10.1186/s41073-020-00095-y

88

having accessible materials does not guarantee that re-

sults can be reproduced [4, 5]. Second, many authors

hesitate to share their work because publishing errone-

ous papers can damage an author’s reputation [6] as

well as trust in science [7]. These perspectives, however,

overlook the fact that engaging in open practices offers

some career advantages [8, 9] and can help in identifying

and correcting mistakes [10, 11].

As a result of authors not including their source code

and underlying data, several further problems arise. For

example, reviewers cannot verify the results, because with-

out the code, they are required to understand the analysis

just by reading the text [12]. Hence, finding errors in re-

sults is difficult and often impossible [6], raising the ques-

tion of whether the traditional research article is suitable

for conveying a complex computational analysis [13].

Additionally, other researchers working in similar areas

cannot continue building on existing work but have to col-

lect data and implement the analysis from scratch [14]. All

these issues are also to society’s disadvantage, as the public

cannot benefit fully from publicly funded research [15].

Funding agencies, e.g., Horizon 2020, are increasingly

requiring data and software management plans as part of

grant proposals. Accordingly, more journal editors are

starting to make sure that author guidelines include a sec-

tion on code and data availability [16, 17], and reviewers

are now considering reproducibility in their decision pro-

cesses [10]. Moreover, concepts and tools to package code,

the computing environment, data, and the text of a re-

search workflow (a so-called “Research Compendium”

[18]) are becoming more advanced and applied. This form

of publishing research allows reviewers to verify the re-

ported results and readers to reuse the materials [19].

Nevertheless, neither the cultural and systematic de-

velopments [20] for ORR nor the existence of technolo-

gies for packaging research reproducibly can alone solve

the plethora of reproducibility issues. Authors often do

not know how to fulfill the requirements of funding

bodies and journals, such as the Transparency and

Openness Promotion (TOP) guidelines [21], or they do

not have the programming skills. It is important to con-

sider that the range of researchers’ programming expert-

ise varies from trained research software engineers to

self-taught beginners. For these reasons, more and more

applications have been created to support the publica-

tion of executable computational research for transpar-

ent and reproducible research. This paper aims at

reviewing these applications in order to help researchers

find the application that best suits their individual needs.

Methods

Study design

In this review study, we surveyed and compared 11 ap-

plications that assist authors in publishing reproducible

research. The goal of the review was to obtain an overview

of the benefits and limitations of these applications con-

sidering the challenges outlined in the previous section.

We contrasted the solutions to create a set of criteria that

addresses the needs of the stakeholders involved in the

scholarly publication process, i.e. publishers, editors, au-

thors, readers/reviewers, and librarians [22].

Sample

We identified the applications during a literature search

as well as through discussions at conferences1 and work-

shops.2 We included an application in our analysis if it

(i) was actively maintained at the time the data for this

paper was collected (5th–13th Dec 20193), (ii) supports

publishing executable code and data that can be

inspected and reused, and (iii) is explicitly connected to

the publication process. Hence, we did not consider

technologies (e.g., containerization) that alone cannot

support the publication process of code because further

infrastructure is needed, systems that only provide ac-

cess to materials (e.g., Zenodo), or workflow systems

(e.g., Taverna [23]). Based on the sample criteria, we se-

lected the following eleven applications for the review,

presented in alphabetical order (see Table 1).

Variables

In a next step, we reviewed literature to identify a set of

comparison criteria (highlighted in bold in the following)

relevant for the stakeholders mentioned above. Accord-

ing to Hrynaszkiewicz [17], publishers refrain from host-

ing data, raising the question of whether the applications

allow (1) “free self-hosting” by the publishers. Since self-

hosting might require changes to the software, we also

checked whether the applications are released under an

(2) “open license”. Next, a proxy for assessing the stage

and the reliability of an application is to check whether

it is already (3) “in use”. To provide an initial estimate of

the application’s longevity, we looked up whether the ap-

plications are (4) “grant-based”, since such funds are

usually temporary. Also, because using literate program-

ming tools is a frequently mentioned recommendation

for creating executable documents [35], we checked

whether the applications support (5) “R Markdown” and

(6) “Jupyter Notebooks”. However, since researchers

might have individual requirements [22], we also

1One conference we attended: EGU General Assembly 2019 (last
access of this and the following URLs: 22nd May 2020); it also had a
session on open science.
2Workshop: eLife innovation sprint 2019, which brought together
people interested in open science.
3A reviewer directed us to the application Authorea, which we missed
in our first analysis, and the lack of pricing information. We thus
collected data to address these aspects on 22nd May 2020

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 2 of 8

89

investigated whether the applications are (7) “extensible”,

meaning, for example, whether users can add a new sub-

mission format. A further relevant piece of information

for authors is whether they need to (8) “upload” their

materials to the application and whether (9) “copyright”

is addressed explicitly in the documentation. Copyright

is a main concern of authors in the context of ORR [36]

and needs to be considered when it comes to reusing re-

search materials [37]. We also checked whether (10)

“sensitive data” can be shared. Based on the benefits of

ORR summarized by Konkol et al. [36], we checked

whether the applications provide tools to enable the (11)

“discovery” of articles, (12) “inspection” of the materials,

(13) “execution” of the analyses (one-click reproducible),

(14) “manipulation” of parameter values, (15) “substitu-

tion” of datasets, and (16) “download” of materials. Fi-

nally, papers describing open science guidelines [21] or

assessing reproducibility of published papers [3] often

refer to the importance of making materials permanently

available, for example, for future use and education [38].

Hence, we investigated whether it is possible to (17)

“modify or delete materials after publication” and

whether these materials can be (18) “shared via a DOI”

or (19) “shared via a URL”.

Data collection

Based on the comparison criteria, two authors collected

information iteratively by investigating the project web-

sites, applications, GitHub/Lab repositories, scientific ar-

ticles, and blog posts. In the first iteration, one author of

this paper gathered information on the applications one

by one and took screenshots. In the second iteration, an-

other author independently checked the information col-

lected in the first iteration. Conflicts concerning the data

were resolved through discussion amongst all authors.

In order to give the scientific community, particularly

the developers of the considered applications, the oppor-

tunity to comment on the analysis, we published a pre-

print [39] of the paper three months before submission.

All collected data is available in the supplement (see

Availability of data and materials). Thus, it is possible to

continue the work in this paper as a “rolling review”.

Since some sources (e.g., documentation) were not sci-

entific articles, we also attached links to and screenshots

of the original information.

Results

Table 2 summarizes aspects relevant for publishers, edi-

tors, authors, readers, and librarians.

Table 1 Overview of applications we included in the analysis

Application Description

Authorea In Authorea, authors can create executable papers collaboratively. They can attach code and data to figures to
make them reproducible. Authors can also directly submit to a journal and, at the same time, publish a preprint.

Binder Binder creates a containerized executable environment based on a repository (e.g., on GitHub/Lab, Zenodo)
including a Jupyter Notebook [24]. Readers can launch the analysis and inspect the workflow in a browser.

Code Ocean Code Ocean creates “capsules” containing code, data, and the computational environment. While reading, users
can execute and inspect the analysis in a separate window below the article or on Code Ocean’s website [25].

eLife Reproducible Document
Stack (RDS)

RDS originates from the life sciences. Authors can publish executable documents based on Stencila (https://stenci.
la/), an open-source editor for articles. The executable document, which contains the whole narrative and execut-
able code snippets, is not only a supplement but the actual scientific article.

Galaxy Galaxy [26] provides features tailored to use cases in the life sciences. It is a web app for developing comput.
Analyses without programming expertise. Scientists can upload and analyze data using Jupyter Notebooks [27].

Gigantum Gigantum packages code, data, the computational environment, and the work history into a Git repository.
Gigantum is composed of a client app for creating as well as executing analyses locally and a cloud-based infra-
structure for sharing computations and collaborating with peers.

Manuscripts Manuscripts is an online tool for writing executable documents collaboratively based on the concept of literate
programming, but featuring a “What you see is what you get” user interface. The runtime environment of the
author is, however, not considered.

o2r o2r [22] originates from the geosciences and addresses publishers who want to extend their infrastructure via a
reproducibility service during the process of paper submission [28]. Authors can create interactive figures, allowing
readers to change model parameters using a slider [29].

REANA REANA [4, 30] originates from particle physics and provides a specification for capturing data, code, and the
comput. Environment. Based on this structure and manually created configuration files, REANA provides command
line interface (CLI) commands to run large analyses on a remote REANA cloud.

ReproZip ReproZip [31, 32] provides a set of CLI commands for encapsulating data, code, and the computational
environment. Users can execute the resulting bundle on a server provided by ReproZip [33] or locally on different
systems.

Whole Tale With Whole Tale [34], authors can create so-called “Tales” that combine narrative, data, code, and the computational
environment. Readers can inspect the materials and execute the analysis in the original environment.

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 3 of 8

90

From the eleven applications, eight allow self-hosting

for free. eLife RDS and REANA (in Table 2 marked by *)

require deployment, since no free online version exists.

Eight applications are released under an open license,

and Gigantum has only published the client tool under

an open license. The open source applications that have

an online version running can be used by researchers for

free. The three commercial providers, namely Authorea,

Code Ocean, and Gigantum, provide the service in ex-

change for payment but they also offer free subscriptions

with limited features and resources (i.e. storage and

computation time).

In total, seven applications are already in use, as

shown by the example papers with reproducible work-

flows. Seven applications currently receive funding from

public or private organizations.4

Ten applications support literate programming, e.g., R

Markdown or Jupyter Notebooks; the Manuscripts appli-

cation supports Markdown but also code execution via

embedded Jupyter Notebooks. Seven applications are ex-

tensible and can be configured to support further pro-

gramming languages. Except for Code Ocean, which also

supports MATLAB and Stata, all applications only sup-

port non-proprietary programming languages.

Seven applications require authors to create their pro-

jects online, whereas eLife’s RDS (based on Stencila),

REANA, and ReproZip allow local usage. Researchers

can also work locally with Gigantum, but they then need

to synchronize with the online service to access all

features.

Regarding copyright, we could not find explicit infor-

mation on assigning copyright for research materials in

five applications. Whole Tale and Gigantum only allow

open licenses, whereas Code Ocean, Galaxy, and o2r en-

courage them. We could not find information on sensi-

tive data in any of the applications.

From the eleven applications, six provide a keyword-

based search for papers, of which o2r provides a spatio-

temporal search combined with thematic properties,

such as libraries used in the code. Five applications

embed a programming environment (e.g., JupyterLab,

RStudio) for inspecting code and data, whereas four pro-

vide their own user interface (UI).

All applications provide support for executing the ana-

lysis. REANA projects are executed via the CLI in a re-

mote REANA cloud, and this also applies to ReproZip,

which in addition to a remote cloud also provides a

Table 2 Overview of which application supports the corresponding criteria. (N/D = no data)

Authorea Binder Code
Ocean

eLife
RDS

Galaxy Gigantum Manuscripts o2r REANA Repro Zip Whole
Tale

Free self-hosting – + – +* + – + + +* + +

Open license – + – + + +/− + + + + +

In use in use
[40]

in use
[2]

in use [41] in use
[42]

in use
[43]

– – – in use
[44]

in use
[31]

–

Grant-based – + – + + – N/D + + + +

R Markdown – + + + – + – + – – +

Jupyter Notebooks + + + + + + – – + + +

Extensible – + + + + – – – + + +

Upload + + + – + – + + – – +

Copyright + N/D + N/D + + N/D + N/D N/D +

Sensitive data – – – – – – – – – – –

Discovery + – + + + – – + – – +

Inspection + + + + + + + + – – +

Execution + + + + + + + + + + +

Manipulation + + + + + + + + + + +

Substitution – – – – – – – + – + –

Download + + + + + + + + – + +

Modify/Delete after
publishing

– + – – + + + – + + –

Shared via DOI + – + + – – – – – – +

Shared via URL + + + + + + + + – + –

4Further details on funding are available in the supplement.

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 4 of 8

91

ReproServer for executing code online. Gigantum’s local

client allows users to run code in the browser. The

remaining applications allow users to execute the ana-

lysis in a browser on a remote server.

Each application allows users to manipulate the code

and rerun it based on a new parameter. Most commonly,

users can directly manipulate the code in the browser (8

applications provide this option). In REANA and Repro-

Zip, users can pass new parameter values via the CLI,

whereas the o2r platform enables authors to configure

UI widgets that allow reviewers/readers to manipulate

parameter values interactively, e.g., by using a slider to

change a model parameter within a defined range. Fea-

tures for substituting the input datasets used in an ana-

lysis are provided by o2r and ReproZip.

While ten applications provide a feature for download-

ing materials, REANA projects need to be stored on a

third-party service to be downloadable.

Overall, six applications allow users to modify/delete

materials after publication. In Binder, REANA, and

ReproZip, modifying/deleting content is possible if the

research materials are stored on GitHub/Lab, but not

when they are stored on Zenodo. Authorea, Code

Ocean, eLife RDS, and Whole Tale assign DOIs to pub-

lished content, ensuring long-term availability and mak-

ing it impossible to edit these after publication. In eLife’s

RDS, the article is composed of text and code; thus, de-

leting it is equivalent to withdrawing a paper.

Discussion

Several developers have created applications for publish-

ing computational research. One might think the appli-

cations, since they all strive for the same overall goal,

resemble each other. However, we showed in this paper

that the applications address different issues and needs,

which increases the chances that stakeholders will find

an application that best suits their individual require-

ments. The review can be used by the various stake-

holders in different ways: Publishers who want to

comply with reproducibility principles may use it to de-

cide for a certain application, editors and program com-

mittees may use it when planning to include code review

in their review process [45], applicants designing data

and software management plans may use it when writing

their funding proposals, and authors who are searching

for tools to disseminate their work in a convincing, sus-

tainable, and transparent manner may also find it valu-

able. In addition to these stakeholders, we also

considered librarians, who are tasked with aspects re-

lated to the preservation and long-term accessibility of

research materials. Given the variety of the stakeholders

and their considerations, it is difficult to determine the

best application or objectively provide a ranking.

Identifying the ideal application strongly depends on the

needs and goals of the stakeholders.

Hosting of the applications

Publishers need to decide whether they want to host an

infrastructure by themselves or engage a provider. Appli-

cations exist for both approaches, though the majority of

them can be self-hosted. Some of the self-hosting solu-

tions are also available as online versions, but it should

be considered that these have limited resources regard-

ing storage and processing power. Moreover, it is diffi-

cult to estimate when the projects will expire. If the

applications are grant-based, they might receive follow-

up funding, but this depends on the projects’ success

and whether they aim at carrying out research (which

might come with many changes to the software) or de-

veloping a scalable and sustainable platform. As public

information on all funding levels and grant durations are

too uncertain and incomplete to be included in the ana-

lysis, we refrained from drawing concrete conclusions in

terms of longevity and how likely they will exist in the

next years.

All self-hosting solutions have an open license, allow-

ing operators to host their own service as well as modify

the software according to their individual needs and

styles. A further advantage of self-hosting is the mitiga-

tion of risks regarding vendor lock-in. However, hosting

one’s own service means that publishers also have to

provide the required technological resources and

personnel. It remains unclear what kinds of costs pub-

lishers will have to expect when hosting a platform and

incorporating it into their publishing infrastructure. The

final costs strongly depend on the number of views, exe-

cution attempts, workflow sizes, and ease of integration

into technical systems. These parameters differ between

use cases and could be used as measures for future re-

search, e.g., on stress tests. Therefore, the metrics of

existing publications might provide the first ways to cal-

culate the required resources. While the Binder instance

MyBinder.org published an initial estimate regarding

costs,5 further data from other services would help to

calculate costs more specifically. Moreover, it would be

interesting to see usage statistics showing how often the

services are used, for example, by authors, readers, and

reviewers, albeit this transparency is only realistic for

non-profit projects. Nevertheless, since reproducibility

studies are rarely successful [5], using these services

seems to be uncommon.

A further criterion we investigated was whether the

applications are in use. While applications in use offer

initial evidence that they work, it might take more effort

5MyBinder costs: https://mybinder.org/v2/gh/jupyterhub/binder-
billing/master?urlpath=lab/tree/analyze_data.ipynb

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 5 of 8

92

to adjust them to fit a publisher’s infrastructure. In con-

trast, beta applications can adjust their features without

worrying about running instances and backwards com-

patibility, but the deployment of such applications might

reveal new issues.

Creating executable analyses

Regarding submission formats, there is a trend toward

literate programming approaches. Most applications ei-

ther support Jupyter Notebooks or R Markdown, which

both have proven to support reproducibility [46]. How-

ever, some journals and publishers rely on different for-

mats, e.g., LaTeX. Transformations to other document

types are often cumbersome and adapting author re-

quirements can be a lengthy process. Hence, it might be

easier to have reproducible documents as a supplement,

potentially for a transition period, until researchers have

adjusted their workflows and executable documents are

widely accepted. Nevertheless, eLife’s RDS has already

shown that combining executable code with narrative in

a scientific article is possible today and comes with ad-

vantages related to communicating scientific results. For

example, readers can, while studying the text, also ma-

nipulate the analysis. A limitation in this context is re-

lated to the peer-review process. All applications require

an account for creating reproducible results, and since

the name of the creator is usually visible, a double-blind

review is not guaranteed. However, access to code

and data is particularly important for reviewers who

need to recommend acceptance or rejection of a sub-

mission. One solution might be to create anonymous

versions of the materials, as is possible with Open

Science Framework,6 or to adopt an open peer-review

process.

A further critical issue is that not all applications

address copyright in their documentation. Those that

do either require or encourage open licenses, which is

a recommendation mentioned frequently in papers

discussing reproducibility guidelines [21, 37]. Hence,

the platforms should inform users about licenses, e.g.,

by referring to existing advising resources (e.g.,

https://choosealicense.com/). Licensing is important to

enable reusability and, thus, is ideally assigned to

code, data, and text separately, as is done, for ex-

ample, by Authorea. Computational reproducibility is

challenging also because of sensitive data. None of

the applications address this issue, but platforms

allowing self-hosting can be combined with existing

solutions, such as involving trustworthy authorities

[47] and cloud-based data enclaves [48].

Studying reproducible research

Being able to reproduce the computational results in a

paper is a clear benefit, but open reproducible research

comes with a number of further incentives [20]. Con-

cerning the discovery of papers, most search tools pro-

vided by the applications do not take full advantage of

the information contained in code and data files, e.g.,

spatiotemporal properties. Instead, they either only pro-

vide a keyword-based search or no search at all. For

inspecting materials, most solutions either provide their

own UI or integrate a development environment, e.g.,

JupyterLab. In both cases, users can directly access, ma-

nipulate, and reuse the code. However, readers (includ-

ing experienced programmers) might still find it

challenging to understand complex code scripts. More-

over, identifying specific parameters buried in the code

and finding out how to change these can be a daunting

task. The concept of nano-publications [49] or bindings

[29] might help to solve these issues. A further need in

this context is a UI for comparing original and manipu-

lated figures, since differences in the figure after chan-

ging parameters might be difficult to spot. Most

applications do not provide any support for substituting

research components, e.g., by other input datasets, which

might be due to the plethora of complex interoperability

issues with respect to data formats or column names in

tabular data. Only ReproZip [32] and o2r [36] provide

basic means to substitute input datasets, yet they require

users to ensure compatibility.

Researchers who are writing or studying computa-

tional research articles might be programming beginners

or experts. Hence, while the learning curve may be ei-

ther shallow or steep, it is present in any case. Although

the applications are well documented, programming

novices in particular might need to invest effort at the

beginning of use. For example, they would need to learn

how to write R Markdown documents and create config-

uration files manually. Some of the creation steps might

be automated, but this usually comes at the cost of flexi-

bility. The learning curve not only exists for authors but

also for consumers, particularly reviewers who need to

verify the results and those who want to build upon the

materials. Nevertheless, such an effort only needs to be

invested once and will eventually result in more convin-

cing and transparent research.

Sharing computational research

The state of the research materials is an issue when it

comes to publication. While some applications fix the

state of the research materials by assigning a DOI and

archiving a snapshot, others allow changing and deleting

them. This is a disadvantage with respect to reproduci-

bility since verifiability and accessibility are lost. In

addition, if self-hosting is not possible, the

6Anonymized links: https://help.osf.io/hc/en-us/articles/360019930333-
Create-a-View-only-Link-for-a-Project

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 6 of 8

93

computational analysis of an article will be executable

only as long as the project and its infrastructure exist;

this dependence is a crucial aspect with respect to ar-

chiving. However, this issue can be mitigated if re-

searchers “go the extra mile” and also publish their

materials in long-term repositories in addition to an exe-

cutable version using one of the applications.

A further dependence is the technology underlying the

infrastructure. For example, without the Docker con-

tainer runtime, the captured computing environment

might not work even though it remains human readable

[50]. This is also true for source code scripts, which are

plain text files and, thus, can be opened using any editor,

even if they cannot be compiled and executed. These ex-

amples demonstrate the importance of using open and

text-based file formats instead of proprietary and binary

file formats in science.

Limitations

This work is subject to a number of limitations. The

scope of this review is narrow and does not cover all ap-

plications that are connected with computational re-

search (e.g., workflow systems, such as Taverna [23]).

Also, we have no access to publishers’ actual systems,

preventing us from being able to evaluate the usability of

APIs and documentation and how easy they can be in-

corporated into existing infrastructures. In addition, this

review is a snapshot of the highly dynamic area of pub-

lishing infrastructures. Hence, the information might be-

come outdated quickly, e.g., an application might extend

the set of functionalities or be discontinued. Still, review-

ing the current state of the landscape to reflect on avail-

able options might be helpful for researchers.

Furthermore, the properties we investigated in this sur-

vey do not cover all possible aspects and discipline-

specific needs, but, nevertheless, stakeholders requiring

more information can use the overview as a starting

point for further research. Also, we collected and inter-

preted the data ourselves and did not contact the appli-

cation developers, which might have increased the

accuracy of the data. Finally, our evaluation only consid-

ered documented features. However, programmers with

sufficient expertise can build upon the open source ap-

plications and implement missing features.

Conclusions

In this review, we compared eleven applications in order

to identify their benefits and limitations for assisting re-

searchers to publish and study open reproducible re-

search. Our findings show that publishers have the

choice between using provided services or self-hosting

solutions, but more data is needed to estimate the costs

for publishers to maintain their own infrastructure. The

review revealed a trend towards literate programming

approaches as well as tools for reviewers and readers,

e.g., for inspecting an analysis or manipulating the as-

sumptions underlying the analysis. We found that being

able to change the materials after publication might re-

sult in conflicts between the version referred to in an

article and the available version, which might have been

changed since the article was first published. In addition

to investigating these issues, the next step is to examine

how using an application affects a reviewer’s decision

and how much additional effort is needed to study the

materials.

Abbreviations

CLI : Command line interface; DOI : Digital Object Identifier; o2r : Opening

reproducible research (project); ORR : Open reproducible researchers; REANA

: Reproducible Analysis (project); RDS : Reproducibility Document Stack; UI

: User Interface

Acknowledgements

We thank Timothy Errington and Mario Malicki for their reviews, Vicky

Steeves for a helpful discussion on the article preprint [39], and Celeste

Brennecka for proofreading.

Authors’ contributions

Markus Konkol wrote the paper, collected the data, and conceptualized the

analysis. Daniel Nüst wrote the paper. Laura Goullier collected data and wrote

the paper. All authors discussed the results and approved the final manuscript.

Funding

This work is supported by the project Opening Reproducible Research 2

(https://www.uni-muenster.de/forschungaz/project/12343) funded by the

German Research Foundation (DFG) under project numbers KR 3930/8–1; TR

864/12–1; PE 1632/17–1. The funders had no role in study design, data

collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

The data is openly available on Zenodo: https://doi.org/10.5281/zenodo.

3562269. The repository includes a list of all applications we looked at and,

for excluded applications, the reasons for exclusion.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors of this paper are members of the o2r project that was also

discussed in this paper (http://o2r.info/).

Received: 5 March 2020 Accepted: 24 June 2020

References

1. Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, et al.

Enhancing reproducibility for computational methods. Science. 2016;

354(6317):1240–1. https://doi.org/10.1126/science.aah6168.

2. Stagge JH, Rosenberg DE, Abdallah AM, Akbar H, Attallah NA, James R.

Assessing data availability and research reproducibility in hydrology and

water resources. Sci Data. 2019;6(1). https://doi.org/10.1038/sdata.2019.30.

3. Nüst D, Granell C, Hofer B, Konkol M, Ostermann FO, Sileryte R, Cerutti V.

Reproducible research and GIScience: an evaluation using AGILE conference

papers. PeerJ. 2018;6:e5072. https://doi.org/10.7287/peerj.preprints.26561.

4. Chen X, Dallmeier-Tiessen S, Dasler R, Feger S, Fokianos P, Benito Gonzalez

J, Hirvonsalo H, et al. Open is not enough. Nat Phys. 2018;15(2):113–9.

https://doi.org/10.1038/s41567-018-0342-2.

5. Konkol M, Kray C, Pfeiffer M. Computational reproducibility in geoscientific

papers: insights from a series of studies with geoscientists and a

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 7 of 8

94

reproduction study. Int J Geogr Inf Sci. 2018;33(2):408–29. https://doi.org/1

0.1080/13658816.2018.1508687.

6. Herndon T, Ash M, Pollin R. Does high public debt consistently stifle

economic growth? A critique of Reinhart and Rogoff. Camb J Econ. 2013;

38(2):257–79. https://doi.org/10.1093/cje/bet075.

7. National Academies of Sciences, Engineering, Medicine & others.

Reproducibility and Replicability in science. Washington, DC.: National

Academies Press; 2019. https://doi.org/10.17226/25303.

8. Markowetz F. Five selfish reasons to work reproducibly. Genome Biol. 2015;

16(1). https://doi.org/10.1186/s13059-015-0850-7.

9. McKiernan EC, Bourne PE, Brown CT, Buck S, Kenall A, Lin J, Yarkoni T.

Author response: how open science helps researchers succeed. 2016

https://doi.org/10.7554/elife.16800.008.

10. Stark PB. Before reproducibility must come preproducibility. Nature. 2018;

557(7707):613. https://doi.org/10.1038/d41586-018-05256-0.

11. Vazire S. A toast to the error detectors. Nature. 2020.

12. Bailey DH, Borwein JM, Stodden V. Facilitating reproducibility in scientific

computing: principles and practice. Reproducibility. 2016:205–31. https://

doi.org/10.1002/9781118865064.ch9.

13. Donoho DL. An invitation to reproducible computational research.

Biostatistics. 2010;11(3):385–8. https://doi.org/10.1093/biostatistics/kxq028.

14. Powers SM, Hampton SE. Open science, reproducibility, and transparency in

ecology. Ecol Appl. 2018;29(1). https://doi.org/10.1002/eap.1822.

15. Piwowar H. Sharing detailed research data is associated with increased

citation rate. Nat Preced. 2007. https://doi.org/10.1038/npre.2007.361.1.

16. Nüst D, Ostermann FO. Sileryte R, Hofer B, Granell C, Teperek M, Graser A,

Broman KW, Hettne KM. (2019). AGILE reproducible paper guidelines.

https://doi.org/10.17605/OSF.IO/CB7Z8.

17. Hrynaszkiewicz I. Publishers’ responsibilities in promoting data quality and

reproducibility. Handb Exp Pharmacol. 2019. https://doi.org/10.1007/164_

2019_290.

18. Gentleman R, Temple Lang D. Statistical analyses and reproducible research.

J Comput Graph Stat. 2007;16(1):1–23. https://doi.org/10.1198/

106186007x178663.

19. Barba LA. Terminologies for reproducible research. arXiv preprint arXiv:1802.

03311; 2018.

20. Munafò MR, Nosek BA, Bishop D, Button KS, Chambers CD, Sert NP,

Simonsohn U, Wagenmakers E-J, Ware JJ, Ioannidis JPA. A manifesto for

reproducible science. Nat Hum Behav. 2017;1(1). https://doi.org/10.1038/

s41562-016-0021.

21. Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ,

et al. Promoting an open research culture. Science. 2015;348(6242):

1422–5.

22. Nüst D, Konkol M, Pebesma E, Kray C, Schutzeichel M, Przibytzin H, Lorenz J.

Opening the publication process with executable research compendia. D-

Lib Magazine. 2017;23(1/2). https://doi.org/10.1045/january2017-nuest.

23. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al.

The Taverna workflow suite: designing and executing workflows of web

services on the desktop, web or in the cloud. Nucleic Acids Res. 2013;

41(W1):W557–61. https://doi.org/10.1093/nar/gkt328.

24. Jupyter P, Bussonnier M, Forde J, Freeman J, Granger B, Head T, Willing C.

Binder 2.0 - reproducible, interactive, sharable environments for science at

scale. Proceedings of the 17th Python in Science Conference. 2018. https://

doi.org/10.25080/majora-4af1f417-011.

25. Clyburne-Sherin A, Fei X, Green SA. Computational reproducibility via

Containers in Social Psychology. Meta-Psychology 3. 2019. https://doi.org/

10.15626/MP.2018.892.

26. Goecks J, Nekrutenko A, Taylor J, Galaxy Team T. Galaxy: a comprehensive

approach for supporting accessible, reproducible, and transparent

computational research in the life sciences. Genome Biol. 2010;11(8):R86.

https://doi.org/10.1186/gb-2010-11-8-r86.

27. Grüning BA, Rasche E, Rebolledo-Jaramillo B, Eberhard C, Houwaart T,

Chilton J, et al. Jupyter and Galaxy: easing entry barriers into complex data

analyses for biomedical researchers. PLoS Comput Biol. 2017;13(5):e1005425.

https://doi.org/10.1371/journal.pcbi.1005425.

28. Nüst D. Reproducibility Service for Executable Research Compendia:

technical specifications and reference implementation (version 1.0.0).

Zenodo.2018. https://doi.org/10.5281/zenodo.2203844.

29. Konkol M, Kray C, Suleiman J. Creating interactive scientific publications

using bindings. Proceedings of the ACM on Human-Computer

Interaction,2019:1–18. https://doi.org/10.1145/3331158.

30. Šimko T, Heinrich L, Hirvonsalo H, Kousidis D, Rodríguez D. REANA: a system

for reusable research data analyses. EPJ Web Conf. 2019;214:06034. https://

doi.org/10.1051/epjconf/201921406034.

31. Steeves V, Rampin R, Chirigati F. Using ReproZip for reproducibility and

library services. IASSIST Quarterly. 2017;42(1):14. https://doi.org/10.29173/

iq18.

32. Chirigati F, Doraiswamy H, Damoulas T, Freire J. Data polygamy.

Proceedings of the 2016 International Conference on Management of Data

- SIGMOD ‘16. 2016. https://doi.org/10.1145/2882903.2915245.

33. Rampin R, Chirigati F, Steeves V, Freire J. ReproServer: making reproducibility

easier and less intensive. arXiv Preprint arXiv:1808.01406; 2018.

34. Brinckman A, Chard K, Gaffney N, Hategan M, Jones MB, Kowalik K, Stodden

V, Turner K, et al. Computing environments for reproducibility: Capturing

the “Whole Tale”. Futur Gener Comput Syst. 2019;94:854–67. https://doi.

org/10.1016/j.future.2017.12.029.

35. Peng RD, Dominici F, Zeger SL. Reproducible epidemiologic research. Am J

Epidemiol. 2006;163(9):783–9.

36. Konkol M, Kray C. In-depth examination of spatiotemporal figures in open

reproducible research. Cartogr Geogr Inf Sci. 2018;46(5):412–27. https://doi.

org/10.1080/15230406.2018.1512421.

37. Stodden V. The legal framework for reproducible scientific research:

licensing and copyright. Comput Sci Eng. 2009;11(1):35–40. https://doi.org/

10.1109/mcse.2009.19.

38. Sayre F, Riegelman A. Replicable Services for Reproducible Research: a

model for academic libraries. Coll Res Libraries. 2019;80(2):260. https://doi.

org/10.5860/crl.80.2.260.

39. Konkol M, Nüst D, Goulier L. Publishing computational research - a review

of infrastructures for reproducible and transparent scholarly communication.

arXiv preprint arXivarXiv:2001.00484; 2020.

40. Hanwell MD, Harris C, Genova A, et al. Open chemistry, JupyterLab, REST,

and quantum chemistry. Authorea. 2020. https://doi.org/10.22541/au.

158687268.81852407.

41. Chitre M. Editorial on writing reproducible and interactive papers. IEEE J

Ocean Eng. 2018;43(3):560–2. https://doi.org/10.1109/joe.2018.2848058.

42. Lewis LM, Edwards MC, Meyers ZR, Talbot Jr, CC, Hao H, Blum D. Replication

Study: Transcriptional Amplification in Tumor Cells with Elevated c-Myc

Cancer Biol 7. 2018. https://doi.org/10.7554/eLife.30274.

43. Ide N, Suderman K, Verhagen M, Pustejovsky J. The language application

grid web service exchange vocabulary. Lect Notes Comput Sci. 2016:18–32.

https://doi.org/10.1007/978-3-319-31468-6_2.

44. Prelipcean D. Physics examples for reproducible analysis. CERN. 2019.

https://cds.cern.ch/record/2690231.

45. Eglen S, Nüst D. CODECHECK: an open-science initiative to facilitate sharing

of computer programs and results presented in scientific publications.

Septentrio Conf Series. 2019;1. https://doi.org/10.7557/5.4910.

46. Grüning B, Chilton J, Köster J, Dale R, Soranzo N, van den Beek M, et al.

Practical computational reproducibility in the life sciences. Cell Syst. 2018;

6(6):631–5. https://doi.org/10.1016/j.cels.2018.03.014.

47. Pérignon C, Gadouche K, Hurlin C, Silberman R, Debonnel E. Certify

reproducibility with confidential data. Science. 2019;365(6449). https://doi.

org/10.1126/science.aaw2825.

48. Foster I. Research infrastructure for the safe analysis of sensitive data. Ann

Am Acad Political Soc Sci. 2017;675(1):102–20. https://doi.org/10.1177/

0002716217742610.

49. Kuhn T, Chichester C, Krauthammer M, Queralt-Rosinach N, Verborgh R,

Giannakopoulos G, et al. Decentralized provenance-aware publishing with

nanopublications. PeerJ Comp Sci. 2016;2:e78. https://doi.org/10.7717/peerj-

cs.78.

50. Boettiger C. An introduction to Docker for reproducible research. ACM

SIGOPS Operating Syst Rev. 2015;49(1):71–9. https://doi.org/10.1145/

2723872.2723882.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 8 of 8

95

7 containerit: generating Dockerfiles for
reproducible researcH witH R

Authors & contribution Daniel Nüst (75%), Matthias Hinz, Edzer Pebesma

Venue JOSS 10.21105/joss.01603

Date 08/2019

Licence Creative Commons Attribution 4.0 International (CC BY 4.0)

Repository https://github.com/o2r-project/containerit/

97

https://doi.org/10.21105/joss.01603
https://github.com/o2r-project/containerit/

containerit: Generating Dockerfiles for reproducible
research with R
Daniel Nüst1 and Matthias Hinz2

1 Institute for Geoinformatics, University of Münster, Germany 2 Professorship for Geoinformatics
and Geodesy, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany

DOI: 10.21105/joss.01603

Software
• Review
• Repository
• Archive

Submitted: 25 July 2019
Published: 21 August 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Statement of Need

Linux containers have become a promising tool to increase transparency, portability, and re-
producibility of research in several domains and use cases: data science (Boettiger, 2015),
software engineering research (Cito & Gall, 2016), multi-step bioinformatics pipelines (Kim,
Ali, Lijeron, Afgan, & Krampis, 2017), standardised environments for exchangeable software
(Belmann et al., 2015), computational archaeology (Marwick, 2017), packaging algorithms
(Hosny, Vera-Licona, Laubenbacher, & Favre, 2016), or geographic object-based image anal-
ysis (Knoth & Nüst, 2017). Running an analysis in a container increases reliability of a
workflow, as it can execute packaged code independently of the author’s computer and its
available configurations and dependencies. However, capturing a computational environment
in containers can be complex, making container use difficult for domain scientists with limited
programming experience. containerit opens up the advantages of containerisation to a
much larger user base by assisting researchers, who are unfamiliar with Linux, command lines
or containerisation, in packaging workflows based on R (R Core Team, 2018) in container
images by using only user-friendly R commands.
Recently containerisation took off as a technology for packaging applications and their depen-
dencies for fast, scalable, and secure sandboxed deployments in cloud-based infrastructures
(cf. Osnat, 2018). The most widely used containerisation software is Docker with the follow-
ing core building blocks (cf. Docker: Get Started): The image is built from the instructions
in a recipe called Dockerfile. The image is executed as a container using a container
runtime. An image can be moved between systems as a file (image tarball) or based on an
image registry. A Dockerfile may use the image created by another Dockerfile as the
starting point, a so-called base image. While containers can be manually altered, the common
practice is to conduct all configurations with the scripts and instructions originating in the
Dockerfile.
An important advantage of containers over virtual machines is that their duality between recipe
and image provides and additional layer of transparency and safeguarding. The Dockerfile
and image can be published alongside a scientific paper to support peer review and, to some
extent, preserve the original results (Nüst et al., 2017). Even if an image cannot be executed
or a Dockerfile can no longer be built, the instructions in the Dockerfile are human-
readable, and files in the image can be extracted to recreate an environment that closely
resembles the original. Further useful features are (a) portability, thanks to a single runtime
dependency, which allows readers to explore an author’s virtual laboratory, including complex
dependencies or custom-made code, either on their machines or in cloud-based infrastructures
(e.g., by using Binder, see Project Jupyter et al., 2018), and (b) transparency, because an
image’s filesystem can be easily inspected. This way, containers can enable verification of
reproducibility and auditing without requiring reviewers to manually download, install, and
re-run analyses (Beaulieu-Jones & Greene, 2017).

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

1
98

Container preservation is an active field of research (Emsley & De Roure, 2018; Rechert et al.,
2017). It is reasonable to assume that key stakeholders interested in workflow preservation,
such as universities or scientific publishers, should be able to operate container runtimes on a
time scale comparable to data storage requirements by funding agencies, e.g., 10 years in case
of the German DFG or British EPSRC. To enable and leverage the stakeholders’ infrastructure,
container creation must become easier and more widespread.

Summary

The package containerit automates the generation of Dockerfiles for workflows in R,
based on images by the Rocker project (Boettiger & Eddelbuettel, 2017). The core feature
of containerit is that it transforms the local session information into a set of instructions
which can be serialised as a Dockerfile, as shown in the code snippet below:

> suppressPackageStartupMessages(library("containerit"))
> my_dockerfile <- containerit::dockerfile(from = utils::sessionInfo())
> print(my_dockerfile)
FROM rocker/r-ver:3.5.2
LABEL maintainer="daniel"
RUN export DEBIAN_FRONTEND=noninteractive; apt-get -y update \

&& apt-get install -y git-core \
libcurl4-openssl-dev \
libssl-dev \
pandoc \
pandoc-citeproc

RUN ["install2.r", "curl", "digest", "evaluate", "formatR", \
"futile.logger", "futile.options", "htmltools", "jsonlite", \
"knitr", "lambda.r", "magrittr", "Rcpp", "rjson", \
"rmarkdown", "rsconnect", "semver", "stevedore", "stringi", \
"stringr", "xfun", "yaml"]

WORKDIR /payload/
CMD ["R"]

The created Dockerfile has installation instructions for the loaded packages and their sys-
tem dependencies. It uses the r-ver stack of Rocker images, matching the R version to
the environment encountered locally by containerit. These images use MRAN snapshots
to control installed R package versions in a reproducible way. The system dependencies re-
quired by these packages are identified using the sysreqs package (Csardi, 2019) and the
corresponding database and API.
dockerfile(..) is the package’s main user function and accepts session information objects,
session information saved in a file, a set of R commands, an R script file, a DESCRIPTION
file, or an R Markdown document (Allaire et al., 2018). Static program analysis using the
package automagic (Brokamp, 2017) is used to increase the chances that the capturing
environment has all required packages available, such as when creating Dockerfiles for R
Markdown documents as a service (Nüst, 2018). To capture the workflow environment,
containerit executes the whole workflow in a new R session using the package callr
(Csárdi & Chang, 2018), because static program analysis can be broken by using helper
functions, such as xfun::pkg_attach() (Xie, 2018), by unintended side effects, or by
seemingly clever or user-friendly yet customised ways of loeading packages (cf. first lines in R
script file tgis_a_1579333_sm7524.r in https://doi.org/10.6084/m9.figshare.7757069.v1).
Further parameters for the function comprise, for example, image metadata, base image,
versioned installations, and filtering of R packages already installed in the base image.

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

2
99

The package containerit‘s main contribution is that it allows for automated capturing of
runtime environments as Dockerfiles based on literate programming workflows (Gentleman
& Lang, 2007) to support reproducible research. Together with stevedore (FitzJohn, 2019),
containerit enables a completely R-based creation and manipulation of Docker containers.
Using containerit only minimally affects researchers’ workflows because it can be applied
after completing a workflow, while at the same time the captured snapshots can enhance
the scholarly publication process (in particular review, interaction, and preservation) and may
form a basis for more reusable and transparent publications. In the future, containerit
may support alternative container software such as Singularity (Kurtzer, Sochat, & Bauer,
2017), enable parametrisation of container executions and pipelines as demonstrated by Kliko
(Molenaar, Makhathini, Girard, & Smirnov, 2018), or support proper accreditation of software
(Jones et al., 2017; D. S. Katz & Chue Hong, 2018).
Related Work
renv is an R package for managing reproducible environments for R providing isolation,
portability, and pinned versions of R packages, but it does not handle system dependencies.
The Experiment Factory similarly focuses on ease of use for creating Dockerfiles for be-
havioural experiments, yet it uses a CLI-based interaction and generates extra shell scripts to
be included in the images. ReproZip (Chirigati, Rampin, Shasha, & Freire, 2016) packages
files identified by tracing in a self-contained bundle, which can be unpacked to a Docker
container/Dockerfile. In the R domain, the package dockerfiler (Fay, 2018) provides
an object-oriented API for manual Dockerfile creation, and liftr (Xiao, 2018) creates a
Dockerfile based on fields added to the metadata header of an R Markdown document.
automagic (Brokamp, 2017), Whales, dockter, and repo2docker use static program anal-
ysis to create environment descriptions from common project configuration files for multiple
programming languages. Namely, automagic analyses R code and can store dependen-
cies in a bespoke YAML format. Whales and dockter provide different formats, including
Dockerfile. Finally, repo2docker primarily creates containers for interactive notebooks to
run as a Binder (Project Jupyter et al., 2018) but does not actively expose a Dockerfile.
None of them apply the strict code execution approach as containerit does.

Acknowledgements

This work is supported by the project Opening Reproducible Research (Offene Reproduzierbare
Forschung) funded by the German Research Foundation (DFG) under project numbers PE 1
632/10-1 and 1632/17-1.

References

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., et al.
(2018). rmarkdown: Dynamic documents for R. Retrieved from https://rmarkdown.rstudio.
com
Beaulieu-Jones, B. K., & Greene, C. S. (2017). Reproducibility of computational workflows
is automated using continuous analysis. Nature Biotechnology, advance online publication.
doi:10.1038/nbt.3780
Belmann, P., Dröge, J., Bremges, A., McHardy, A. C., Sczyrba, A., & Barton, M. D. (2015).
Bioboxes: Standardised containers for interchangeable bioinformatics software. GigaScience,
4(1), 47. doi:10.1186/s13742-015-0087-0
Boettiger, C. (2015). An introduction to Docker for reproducible research, with examples
from the R environment. ACM SIGOPS Operating Systems Review, 49(1), 71–79. doi:10.
1145/2723872.2723882

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

3
100

Boettiger, C., & Eddelbuettel, D. (2017). An Introduction to Rocker: Docker Containers for
R. The R Journal, 9(2), 527–536. doi:10.32614/RJ-2017-065
Brokamp, C. (2017). Automagic: Automagically document and install packages necessary to
run R code. Retrieved from https://CRAN.R-project.org/package=automagic
Chirigati, F., Rampin, R., Shasha, D., & Freire, J. (2016). ReproZip: Computational re-
producibility with ease. In Proceedings of the 2016 international conference on manage-
ment of data, SIGMOD ’16 (pp. 2085–2088). San Francisco, California, USA: ACM.
doi:10.1145/2882903.2899401
Cito, J., & Gall, H. C. (2016). Using Docker Containers to Improve Reproducibility in Soft-
ware Engineering Research. In Proceedings of the 38th International Conference on Software
Engineering Companion, ICSE ’16 (pp. 906–907). ACM. doi:10.1145/2889160.2891057
Csardi, G. (2019). Sysreqs: Install systemrequirements of packages. Retrieved from https:
//github.com/r-hub/sysreqs
Csárdi, G., & Chang, W. (2018). Callr: Call R from R. Retrieved from https://CRAN.
R-project.org/package=callr
Emsley, I., & De Roure, D. (2018). A Framework for the Preservation of a Docker Container
International Journal of Digital Curation. International Journal of Digital Curation, 12(2).
doi:10.2218/ijdc.v12i2.509
Fay, C. (2018). Dockerfiler: Easy Dockerfile creation from R. Retrieved from https://CRAN.
R-project.org/package=dockerfiler
FitzJohn, R. (2019). Stevedore: Docker client. Retrieved from https://CRAN.R-project.org/
package=stevedore
Gentleman, R., & Lang, D. T. (2007). Statistical Analyses and Reproducible Research. Jour-
nal of Computational and Graphical Statistics, 16(1), 1–23. doi:10.1198/106186007X178663
Hosny, A., Vera-Licona, P., Laubenbacher, R., & Favre, T. (2016). AlgoRun: A Docker-based
packaging system for platform-agnostic implemented algorithms. Bioinformatics, 32(15),
2396–2398. doi:10.1093/bioinformatics/btw120
Jones, M. B., Boettiger, C., Mayes, A. C., Arfon Smith, Slaughter, P., Niemeyer, K., Gil, Y.,
et al. (2017). CodeMeta: An exchange schema for software metadata. KNB Data Repository.
doi:10.5063/schema/codemeta-2.0
Katz, D. S., & Chue Hong, N. P. (2018). Software Citation in Theory and Practice. In J.
H. Davenport, M. Kauers, G. Labahn, & J. Urban (Eds.), Mathematical Software – ICMS
2018, Lecture Notes in Computer Science (pp. 289–296). Springer International Publishing.
doi:10.1007/978-3-319-96418-8_34
Kim, B., Ali, T. A., Lijeron, C., Afgan, E., & Krampis, K. (2017). Bio-Docklets: Virtualization
Containers for Single-Step Execution of NGS Pipelines. bioRxiv, 116962. doi:10.1101/116962
Knoth, C., & Nüst, D. (2017). Reproducibility and Practical Adoption of GEOBIA with Open-
Source Software in Docker Containers. Remote Sensing, 9(3), 290. doi:10.3390/rs9030290
Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for
mobility of compute. PLOS ONE, 12(5), e0177459. doi:10.1371/journal.pone.0177459
Marwick, B. (2017). Computational Reproducibility in Archaeological Research: Basic Prin-
ciples and a Case Study of Their Implementation. Journal of Archaeological Method and
Theory, 24(2), 424–450. doi:10.1007/s10816-015-9272-9
Molenaar, G., Makhathini, S., Girard, J. N., & Smirnov, O. (2018). Kliko—The scientific
compute container format. Astronomy and Computing, 25, 1–9. doi:10.1016/j.ascom.2018.
08.003

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

4
101

Nüst, D. (2018, December). Reproducibility Service for Executable Research Compendia:
Technical Specifications and Reference Implementation. Zenodo. doi:10.5281/zenodo.
2203844
Nüst, D., Konkol, M., Pebesma, E., Kray, C., Schutzeichel, M., Przibytzin, H., & Lorenz,
J. (2017). Opening the Publication Process with Executable Research Compendia. D-Lib
Magazine, 23(1/2). doi:10.1045/january2017-nuest
Osnat, R. (2018, March). A Brief History of Containers: From the 1970s to 2017. Retrieved
from https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
Project Jupyter et al. (2018). Binder 2.0 - reproducible, interactive, sharable environments
for science at scale. In Proceedings of the 17th python in science conference. doi:10.25080/
Majora-4af1f417-011
R Core Team. (2018). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Rechert, K., Liebetraut, T., Kombrink, S., Wehrle, D., Mocken, S., & Rohland, M. (2017).
Preserving Containers. In J. Kratzke & V. Heuveline (Eds.), Forschungsdaten managen (pp.
143–151). doi:10.11588/heibooks.285.377
Xiao, N. (2018). Liftr: Containerize R Markdown documents for continuous reproducibility.
Retrieved from https://CRAN.R-project.org/package=liftr
Xie, Y. (2018). Xfun: Miscellaneous functions by ’Yihui Xie’. Retrieved from https://CRAN.
R-project.org/package=xfun

Nüst et al., (2019). containerit: Generating Dockerfiles for reproducible research with R. Journal of Open Source Software, 4(40), 1603.
https://doi.org/10.21105/joss.01603

5
102

8 Ten simple rules for writing Dockerfiles
for reproducible data science

Authors & contribution Daniel Nüst (40%), Vanessa Sochat, BenMarwick, Stephen J. Eglen,
Tim Head, Tony Hirst, Benjamin D. Evans

Venue PLoS Computational Biology (SNIP 2020: 1.71) 10.1371/journal.pcbi.1008316

Date 11/2020

Licence Creative Commons Attribution 4.0 International (CC BY 4.0)

Repository https://github.com/nuest/ten-simple-rules-dockerfiles/

103

https://www.journalindicators.com/indicators/journal/4000151810
https://doi.org/10.1371/journal.pcbi.1008316
https://github.com/nuest/ten-simple-rules-dockerfiles/

EDITORIAL

Ten simple rules for writing Dockerfiles for

reproducible data science

Daniel NüstID
1*, Vanessa SochatID

2, Ben MarwickID
3, Stephen J. EglenID

4, Tim Head5,

Tony HirstID
6, Benjamin D. Evans7

1 Institute for Geoinformatics, University of Münster, Münster, Germany, 2 Stanford Research Computing

Center, Stanford University, Stanford, California, United States of America, 3 Department of Anthropology,

University of Washington, Seattle, Washington, United States of America, 4 Department of Applied

Mathematics and Theoretical Physics, University of Cambridge, Cambridge, Cambridgeshire, Great Britain,

5 Wild Tree Tech, Zurich, Switzerland, 6 Department of Computing and Communications, The Open

University, Great Britain, 7 School of Psychological Science, University of Bristol, Bristol, Great Britain

* daniel.nuest@uni-muenster.de

Abstract

Computational science has been greatly improved by the use of containers for packaging

software and data dependencies. In a scholarly context, the main drivers for using these

containers are transparency and support of reproducibility; in turn, a workflow’s reproducibil-

ity can be greatly affected by the choices that are made with respect to building containers.

In many cases, the build process for the container’s image is created from instructions pro-

vided in a Dockerfile format. In support of this approach, we present a set of rules to help

researchers write understandable Dockerfiles for typical data science workflows. By fol-

lowing the rules in this article, researchers can create containers suitable for sharing with

fellow scientists, for including in scholarly communication such as education or scientific

papers, and for effective and sustainable personal workflows.

Author summary

Computers and algorithms are ubiquitous in research. Therefore, defining the computing

environment, i.e., the body of all software used directly or indirectly by a researcher, is

important, because it allows other researchers to recreate the environment to understand,

inspect, and reproduce an analysis. A helpful abstraction for capturing the computing

environment is a container, whereby a container is created from a set of instructions in a

recipe. For the most common containerisation software, Docker, this recipe is called a

Dockerfile. We believe that in a scientific context, researchers should follow specific

practices for writing a Dockerfile. These practices might be somewhat different from the

practices of generic software developers in that researchers often need to focus on trans-

parency and understandability rather than performance considerations. The rules pre-

sented here are intended to help researchers, especially newcomers to containerisation,

leverage containers for open and effective scholarly communication and collaboration

while avoiding the pitfalls that are especially irksome in a research lifecycle. The

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nüst D, Sochat V, Marwick B, Eglen SJ,

Head T, Hirst T, et al. (2020) Ten simple rules for

writing Dockerfiles for reproducible data science.

PLoS Comput Biol 16(11): e1008316. https://doi.

org/10.1371/journal.pcbi.1008316

Editor: Scott Markel, Dassault Systemes BIOVIA,

UNITED STATES

Published: November 10, 2020

Copyright: © 2020 Nüst et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. DN is supported by

the project Opening Reproducible Research II

(https://o2r.info/; https://www.uni-muenster.de/

forschungaz/project/12343) funded by the German

Research Foundation (DFG) under project number

PE 1632/17-1. DN and SJE are supported by a

Mozilla mini science grant. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

104

recommendations cover a deliberate approach to Dockerfile creation, formatting and

style, documentation, and habits for using containers.

Introduction

Computing infrastructure has advanced to the point where not only can we share data under-

lying research articles, but we can also share the code that processes these data. The sharing of

code files is enabled by collaboration platforms such as GitHub or GitLab and is becoming an

increasingly common practice. The sharing of the computing environment is enabled by con-

tainerisation, which allows for documenting and sharing entire workflows in a comprehensive

way. Importantly, this sharing of computational assets is paramount for increasing the repro-

ducibility of computational research. While papers based on the traditional journal article for-

mat can share extensive details about the research, computational research is often far too

complicated to be effectively disseminated in this format [1]. Approaches such as containerisa-

tion are needed to support computational research, or when analysing or visualising data,

because a paper’s actual contribution to knowledge includes the full computing environment

that produced a result [2].

Containerisation helps provide instructions for packaging the building blocks of computer-

based research (i.e., code, data, documentation, and the computing environment). Specifically,

containers are built from plain text files that represent a human- and machine-readable recipe

for creating the computing environment and interacting with data. By providing this recipe,

authors of scientific articles greatly improve their work’s level of documentation, transparency,

and reusability. This is an important part of common practice for scientific computing [3,4].

An overall goal of these practices is to ensure that both the author and others are able to repro-

duce and extend an analysis workflow. The containers built from these recipes are portable

encapsulated snapshots of a specific computing environment that are both more lightweight

and transparent than virtual machines. Such containers have been demonstrated for capturing

scientific notebooks [5] and reproducible workflows [6].

While several tutorials exist on how to use containers for reproducible research ([7–11] and

Gruening and colleagues [12] give very helpful recommendations for packaging reusable soft-

ware in a container), there is no detailed manual for how to write the actual instructions to cre-

ate the containers for computational research besides generic best practice guides [13,14]. Here,

we introduce a set of recommendations for producing container configurations in the context

of data science workflows using the popular Dockerfile format, summarised in Fig 1.

Prerequisites and scope

To start with, we assume the existence of a scripted scientific workflow, i.e., you can, at least at

a certain point in time, execute the full process with a fixed set of commands, for example,

make prepare_data followed by Rscript analysis.R or only python3 my-
workflow.py. To maximise reach, we assume that containers, which you eventually share

with others, can only run open-source software; tools like Mathematica and Matlab are out of

scope for this example. A workflow that does not support scripted execution is also out of

scope for reproducible research, as it does not fit well with containerisation. Furthermore,

workflows interacting with many petabytes of data and executed in high-performance comput-

ing (HPC) infrastructures are out of scope. Using such HPC job managers or cloud infrastruc-

tures would require a collection of “Ten Simple Rules” articles in their own right. For the HPC

use case, we encourage the reader to look at Singularity [15]. For this article, we focus on work-

flows that typically run on single machine, e.g., a researcher’s own laptop computer or a virtual

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 2 / 24

105

Fig 1. Summary of the 10 simple rules for writing Dockerfiles for reproducible data science.

https://doi.org/10.1371/journal.pcbi.1008316.g001

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 3 / 24

106

server. The reader might scope the data requirement to under a terabyte, and compute require-

ment to a machine with 16 cores running over the weekend.

Although it is outside the scope of this article, we point readers to docker-compose [16]

in the case where one might need container orchestration for multiple applications, e.g., web

servers, databases, and worker containers. A docker-compose.yml configuration file

allows for defining mounts, environment variables, and exposed ports and helps users stick to

“one purpose per container”, which often means one process running in the container, and to

combine existing stable building blocks instead of bespoke massive containers for specific

purposes.

Because “the number of unique research environments approximates the number of

researchers” [17], sticking to conventions helps every researcher to understand, modify, and

eventually write container recipes suitable for their needs. Even if they are not sure how the

underlying technology actually works, researchers should leverage containerisation following

good practices. The practices that are to be discussed in this article are strongly related to soft-

ware engineering in general and research software engineering in particular, which is concerned

with quality, training, and recognition of software in science [18]. We encourage you to reach

out to your local or national community of research software engineers (see list of organisations)

if you have questions on software development in research that go beyond the rules of this work.

While many different container technologies exist, this article focuses on Docker [19].

Docker is a highly suitable tool for reproducible research (e.g., [20]), and our observations indi-

cate it is the most widely used container technology in academic data science. The goal of this

article is to guide you as you write a Dockerfile, the file format used to create Docker con-

tainer images. The rules will help you ensure that the Dockerfile allows for interactive

development as well as for reaching the higher goals of reproducibility and preservation of

knowledge. Such practices do not generally appear in generic containerisation tutorials, and

they are rarely found in the Dockerfiles published as part of software projects that are often

used as templates by novices. The differences between a helpful, stable Dockerfile and one

that is misleading, prone to failure, and full of potential obstacles are not obvious, especially for

researchers who do not have extensive software development experience or formal training. By

committing to this article’s rules, one can ensure that their workflows are reproducible and

reusable, that computing environments are understandable by others, and that researchers

have the opportunity to collaborate effectively. Applying these rules should not be triggered by

the publication of a finished project but should instead be weaved into day-to-day habits (cf.

thoughts on openness as an afterthought by [21] and on computational reproducibility by [2]).

Docker and Dockerfiles

Docker [19] is a container technology that has been widely adopted and is supported on many

platforms, and it has become highly useful for research. Containers are distinct from virtual

machines or hypervisors, as they do not emulate hardware or operating system kernels and

hence do not require the same system resources. Several solutions for facilitating reproducible

research are built on top of containers [17,22–25], but these solutions intentionally hide most

of the complexity from the researcher.

To create Docker containers for specific workflows, we write text files that follow a particu-

lar format called Dockerfile [26]. A Dockerfile is a machine- and human-readable

recipe for building images. Here, images are executable files that include the application, e.g.,

the programming language interpreter needed to run a workflow, and the system libraries

required by an application to run. Thus, a Dockerfile consists of a sequence of instructions

to copy files and install software. Each instruction adds a layer to the image, which can be

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 4 / 24

107

cached across image builds for minimising build and download times. Once an image is built

or downloaded, it is then launched as a running instance known as a container. The images

have a main executable exposed as an “entrypoint” that is started when they are run as stateful

containers. Further, containers can be modified, stopped, restarted, and purged.

A visual analogy for building and running a container is provided in Fig 2. Akin to compil-

ing source code for a programming language, creating a container also starts with a plain text

file (Dockerfile), which provides instructions for building an image. Similar to using a

compiled binary file to launch a program, the image is then run to create a container instance.

See Listing 1 for a full Dockerfile, which we will refer to throughout this article.

While Docker was the original technology to support the Dockerfile format, other con-

tainer technologies now offer support for it, including podman/buildah supported by RedHat,

kaniko, img, and buildkit. The container software Singularity [15], which is optimised for sci-

entific computing and the security needs of HPC environments, uses its own format, called the

Singularity recipe, but it can also import and run Docker images. The rules here are, to some

extent, transferable to Singularity recipes.

While some may argue against publishing reproducibly, e.g., due to a lack of time and

incentives, a reluctance to share (cf. [28]), and the substantial technical challenges involved in

maintaining software and documentation, it should become increasingly straightforward for

the average researcher to provide computational environment support for their publication in

the form of a Dockerfile, a pre-built Docker image, or another type of container. If a

researcher can find and create containers or write a Dockerfile to address their most com-

mon use cases, then, arguably, sharing it would not make for extra work after this initial setup

Fig 2. The workflow to create Docker containers by analogy. Containers begin with a Dockerfile, a recipe for

building the computational environment (analogous to source code in a compiled programming language). This is

used to build an image with the docker build command, analogous to compiling the source code into an

executable (binary) file. Finally, the image is used to launch one or more containers with the docker run command

(analogous to running an instance of the compiled binary as a process).

https://doi.org/10.1371/journal.pcbi.1008316.g002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 5 / 24

108

(cf. README.md of [29]). In fact, the Dockerfile itself represents powerful documentation

to show from where data and code were derived, i.e., downloaded or installed, and, conse-

quently, where a third party might obtain the data again.

Listing 1. Dockerfile full example. The Dockerfile and all other files are published

in the full-demo example, see Section Examples; the image docker.io/nuest/
datascidockerfiles:1.0.0 is a ready-to-use build of this example.

FROM docker.io/rocker/verse:3.6.2

INSTALL BASE SOFTWARE

Install Java, needed for package rJava

RUN apt-get update && \

apt-get install -y default-jdk && \

rm -rf /var/lib/apt/lists/�

INSTALL WORKFLOW TOOLS

Install system dependencies for R packages

RUN apt-get update && \

apt-get install -y \

needed for RNetCDF, found via https://sysreqs.r-hub.io/pkg/RNetCDF

libnetcdf-dev libudunits2-dev \

needed for git2r:

libgit2-dev

Install R packages, based on https://github.com/rocker-org/geospatial/blob/

master/Dockerfile

RUN install2.r --error \

RColorBrewer \

RNetCDF \

git2r \

rJava

WORKDIR /tmp

Install Python tools and their system dependencies

RUN apt-get update && \

apt-get install -y python-pip && \

rm -rf /var/lib/apt/lists/�

COPY requirements.txt requirements.txt

RUN pip install -r requirements.txt

Download superduper image converter

RUN wget https://downloads.apache.org/pdfbox/2.0.19/pdfbox-app-2.0.19.jar

ADD MY OWN SCRIPTS

Add workflow scripts

WORKDIR /work

COPY myscript.sh myscript.sh

COPY analysis.py analysis.py

COPY plots.R plots.R

Configure workflow

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 6 / 24

109

ENV DATA_SIZE 42

Uncomment the following lines to execute preprocessing tasks during build

#RUN python analysis.py

#RUN Rscript plots.R

WORKFLOW CONTAINER FEATURE

CMD from base image used for development, uncomment the following lines to

have a "run workflow only" image

CMD["./myscript.sh"]

Usage instructions

Build the images with

> docker build --tag datascidockerfiles:1.0.0.

Run the image interactively with RStudio, open it on http://localhost/

> docker run -it -p 80:8787 -e PASSWORD = ten --volume $(pwd)/input:/input

datascidockerfiles:1.0.0

Run the workflow:

> docker run -it --name gwf datascidockerfiles:1.0.0 /work/myscript.sh

Extract the data:

> docker cp gwf:/output/ ./outputData

Extract the figures:

> docker cp gwf:/work/figures/ ./figures

Rule 1: Use available tools

Rule 1 could informally be described as “Don’t bother to write a Dockerfile!”. Writing a

Dockerfile from scratch can be difficult, and even experts sometimes take shortcuts. A

good initial strategy is to look at tools that can help generate a Dockerfile for you. The

developers of such tools have likely thought about and implemented good practices, and they

may even have incorporated newer practices when reapplied at a later point in time. Therefore,

the most important rule is to apply a multistep process to creating a Dockerfile for your

specific use case.

First, you want to determine whether there is an existing image that you can use; if so, you

want to be able to use it and add the instructions for doing so to your workflow documenta-

tion. As an example, you might be doing some kind of interactive development. For interactive

development environments such as notebooks and development servers or databases, you can

readily find images that come installed with all the software that you need. You can look for

information about images in (a) the documentation of the software you intend to use; (b) the

Docker image registry Docker Hub; or (c) the source code projects of the software being used,

as many developers today rely on containers for development, testing, and teaching.

Second, if there is no suitable preexisting image for your needs, you might next look to

well-maintained tools to help with Dockerfile generation. These tools can add required

software packages to an existing image without you having to manually write a Dockerfile
at all. “Well-maintained” not only refers to the tool’s own stability and usability but also indi-

cates that suitable base images are used, typically from the official Docker library [30], to

ensure that the container has the most recent security fixes for the operating system in ques-

tion. See the next section “Tools for container generation” for details.

Third, if these tools do not meet your needs, you may want to write your own Docker-
file. In this case, follow the remaining rules.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 7 / 24

110

Tools for container generation

repo2docker [25] is a tool maintained by Project Jupyter that can help to transform a

source code or data repository, e.g., GitHub, GitLab, or Zenodo, into a container. The tool

relies on common configuration files for defining software dependencies and versions, and

it supports a few more special files; see the supported configuration files. As an example,

we might install jupyter-repo2docker and then run it against a repository with a

requirements.txt file, an indication of being a Python workflow with dependencies on

the Python Package Index (PyPI), using the following command:

jupyter-repo2docker https://github.com/norvig/pytudes

The resulting container image installs the dependencies listed in the requirements file, and

it provides an entrypoint to run a notebook server to interact with any existing workflows in

the repository. Since repo2docker is used within MyBinder.org, if you make sure your

workflow is “Binder-ready”, you and others can also obtain an online workspace with a single

click. However, one precaution to consider is that the default command above will create a

home for the current user, meaning that the container itself would not be ideal to share;

instead, any researcher interested in interacting with the code inside should run repo2-
docker themselves and create their own container. Because repo2docker is deterministic,

the environments are the same (see Rule 5 for ensuring the same software versions).

Additional tools to assist with writing Dockerfiles include containerit [31] and

dockta [32]. containerit automates the generation of a stand-alone Dockerfile for

workflows in R. This utility can provide a starting point for users unfamiliar with writing a

Dockerfile, or it can, together with other R packages, provide a full image creation and

execution process without having to leave an R session. dockta supports multiple program-

ming languages and configurations files, just as repo2docker does, but it attempts to create

a readable Dockerfile compatible with plain Docker and to improve user experience by

cleverly adjusting instructions to reduce build time. While perhaps more useful for fine-tun-

ing, linters can also be helpful when writing Dockerfiles, by catching errors or non-recom-

mended formulations (see Rule 10).

Tools for templating

It is likely that over time you will work on projects and develop images that are similar in

nature to each other. To avoid constantly repeating yourself, you should consider adopting

a standard workflow that will give you a quick start for a new project. As an example,

cookie cutter templates [33] or community templates (e.g., [34]) can provide the required

structure and files (e.g., for documentation, continuous integration (CI), and licenses), for

getting started. If you decide to build your own cookie cutter template, consider collaborat-

ing with your community during development of the standard to ensure it will be useful to

others.

Part of your project template should be a protocol for publishing the Dockerfile and

even exporting the image to a suitable location, e.g., a container registry or data repository,

taking into consideration how your workflow can receive a DOI for citation. A template is

preferable to your own set of base images because of the maintenance efforts the base images

require. Therefore, instead of building your own independent solution, consider contributing

to existing suites of images (see Rule 2) and improving these for your needs.

For any tool that you use, be sure to look at documentation for usage and configuration

options, and look for options to add metadata (e.g., labels; see Rule 4).

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 8 / 24

111

Rule 2: Build upon existing images

Many pre-built community and developer contributed Docker images are publically available

for anyone to pull, run and extend, without having to replicate the image construction process.

However, a good understanding of how base images and image tags work is crucial, as the

image and tag that you choose has important implications for your derived images and con-

tainers. It is good practice to use base images that are maintained by the Docker library, so

called “official images” [35], which benefit from a review for best practices and vulnerability

scanning [13]. You can identify these images by the missing user portion of the image name,

which comes before the /, e.g., r-base or python. However, these images only provide

basic programming languages or very widely used software, so you will likely use images main-

tained by organisations or fellow researchers.

While some organisations can be trusted to update images with security fixes (see list

below), for most individual accounts that provide ready-to-use images, it is likely that these will

not be updated regularly. Further, it’s even possible that an image or a Dockerfile could dis-

appear, or an image could be published with malicious intent (though we have not heard of any

such case in academia). Therefore, for security, transparency, and reproducibility, you should

only use images where you have access to the Dockerfile. In case a repository goes away,

we suggest that you save a copy of the Dockerfile within your project (see Rule 7).

The following list is a selection of communities that produce widely used, regularly updated

images, including ready-to-use images with preinstalled collections of software configured to

work out of the box. Do take advantage of such images, especially for complex software envi-

ronments, e.g., machine learning tool stacks, or a specific BLAS library.

• Rocker for R and RStudio images [20]

• Bioconductor Docker images for bioinformatics with R

• NeuroDebian images for neuroscience [36]

• Jupyter Docker Stacks for Notebook-based computing

• Taverna Server for running Taverna workflows

For example, here is how we would use a base image verse, which provides the popular

Tidyverse suite of packages [37], with R version 3.5.2 from the rocker organisation

on Docker Hub (docker.io, which is the default and can be omitted).

FROM docker.io/rocker/verse:3.6.2

Use version-specific tags

Images have tags associated with them, and these tags have specific meanings, e.g., a semantic

version indicator such as 3.7 or dev, or variants like slim that attempt to reduce image size.

Tags are defined at the time of image build and appear in the image name after the : when

you use an image, e.g., python:3.7. By convention a missing tag is assumed to be the word

latest, which gives you the latest updates but is also a moving target for your computing

environment that can break your workflow. Note that a version tag means that the tagged soft-

ware is frozen, but it does not mean that the image will not change, as backwards compatible

fixes (cf. semantic versioning, [38]), e.g., version 1.2.3 that fixes a security problem in ver-

sion 1.2.2 or updates to an underlying system library, would be published to the parent tag

1.2.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 9 / 24

112

For data science workflows, you should always rely on version-specific image tags, both for

base images that you use and for images that you build yourself and then run (see usage

instructions in Listing 1 for an example of the --tag parameter of docker build). When

keeping different versions (tags) available, it is good practice to publish an image in an image

registry. For details, we refer you to the documentation on automated builds, see Docker Hub

Builds or GitLab’s Container Registry as well as CI services such as GitHub actions, or

CircleCI that can help you get started. Do not docker push a locally built image, because

that counteracts the considerations outlined above. If a pre-built image is provided in a public

image registry, do not forget to direct the user to it in your documentation, e.g., in the

README file or in an article.

Rule 3: Format for clarity

First, it is good practice to think of the Dockerfile as a human- and machine-readable file.

This means that you should use indentation, new lines, and comments to make your Dock-
erfile well documented and readable. Specifically, carefully indent commands and their

arguments to make clear what belongs together, especially when connecting multiple com-

mands in a RUN instruction with &&. Use \ at the end of a line to break a single command into

multiple lines. This will ensure that no single line gets too long to comfortably read. Content

spread across more and shorter lines also improves readability of changes in version control

systems. Further, use long versions of parameters for readability (e.g.,--input instead of

-i). When you need to change a directory, use WORKDIR, because it not only creates the

directory if it does not exist but also persists the change across multiple RUN instructions.

Second, clarity of the steps within a Dockerfile is most important, and if it requires verbos-

ity or adds to the final image size, that is an acceptable trade-off. For example, if your container

uses a script to run a complex install routine, instead of removing it from the container upon

completion (a practice commonly seen in production Dockerfiles aiming at small image

sizes, cf. [12]), you should keep the script in the container for a future user to inspect; the script

size is negligible compared to the image size. One common pattern you will encounter is a sin-

gle and very lengthy RUN instruction chaining multiple commands to install software and

clean up afterwards. For example (a) the instruction updates the database of available packages,

installs a piece of software from a package repository, and purges the cache of the package

manager; or (b) the instruction downloads a software’s source archive, unpacks it, builds

and installs the software, and then removes the downloaded archive and all temporary files.

Although this pattern creates instructions that may be hard to read, it is very common and can

even increase clarity within the image file system because installation and build artifacts are

gone. In general, if your container is mostly software dependencies, you should not need to

worry about image size because (a) your data is likely to have much larger storage require-

ments; and (b) transparency and inspectability outweigh storage concerns in data science. If

you really need to reduce the size, you may look into using multiple containers (cf. [12]) or

multistage builds [39].

Depending on the programming language used, your project may already contain files to

manage dependencies, and you may use a package manager to control this aspect of the com-

puting environment. This is a very good practice and helpful, though you should consider the

externalisation of content to outside of the Dockerfile (see Rule 7). Often, a single long

Dockerfile with sections and helpful comments can be more understandable than a collec-

tion of separate files.

Generally, aim to design the RUN instructions so that each performs one scoped action, e.g.,

download, compile, and install one tool. This makes the lines of your Dockerfile a well-

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 10 / 24

113

documented recipe for the user as well as a machine. Each instruction will result in a new layer,

and reasonably grouped changes increase readability of the Dockerfile and facilitate inspec-

tion of the image, e.g., with tools like dive [40]. Convoluted RUN instructions can be acceptable

to reduce the number of layers, but careful layout and consistent formatting should be applied.

Although you will find Dockerfiles that use build-time variables to dynamically change

parameters at build time, such a customisation option reduces clarity for data science workflows.

Rule 4: Document within the Dockerfile

Explain in comments

As you are writing the Dockerfile, be mindful of how other people (including future you!)

will read it and why. Are your choices and commands being executed clearly, or are further

comments warranted? To assist others in making sense of your Dockerfile, you can add

comments that include links to online forums, code repository issues, or version control com-

mit messages to give context for your specific decisions. For example, this Dockerfile by

Kaggle does a good job of explaining the reasoning behind the contained instructions. If you

copy instructions from another Dockerfile, acknowledge the source in a comment. Also, it

can be helpful to include comments about commands that did not work so you do not repeat

past mistakes. Further, if you find that you need to remember an undocumented step, that is

an indication this step should be documented in the Dockerfile. All instructions can be

grouped starting with a short comment, which also makes it easier to spot changes if your

Dockerfile is managed in some version control system (see Rule 6). Listing 2 shows a

selection of typical kinds of comments that are useful to include in a Dockerfile.

Listing 2. Partial Dockerfile with examples for helpful comments.

. . .

apt-get install specific version, use ‘apt-cache madison <pkg>‘

to see available versions

RUN apt-get install python3-pandas = 0.23.3+dfsg-4ubuntu1

install required R packages; before log the used repository

for better provenance in the build log

RUN R -e ‘getOption("repos")’ && \

install2.r \

fortunes \

here

this library must be installed from source to get version newer

than in apt sources

RUN git clone http://url.of/repo && \

cd repo && \

make build &&

make install

Add metadata as labels

Docker automatically captures useful information in the image metadata, such as the version of

Docker used for building the image. The LABEL instruction can add custom metadata to

images. You can view all labels and other image metadata with docker inspect command.

Listing 3 shows the most relevant ones for data science workflows. Labels serve as structured

metadata that can be leveraged by services, e.g., https://microbadger.com/labels. For example,

software versions of containerised applications (cf. [12]), licenses, and maintainer contact

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 11 / 24

114

information are commonly seen, and they are very useful if a Dockerfile is discovered out

of context. Regarding licensing information, this should include the license of your own code

and could point to a LICENSE file within the image (cf. [12]). While you can add arbitrarily

complex information with labels, for data science scenarios the user-facing documentation is

much more important. Relevant metadata that might be utilised with future tools include global

identifiers such as ORCID identifiers, DOIs of the research compendium (cf. https://research-

compendium.science), e.g., reserved on Zenodo, or a funding agency’s grant number. You can

use the ARG instruction to pass variables at build time, for example, to pass values into labels,

such as the current date or version control revision. However, a script or Makefile might be

required so that you do not forget that you set the argument, or how you set it (see Rule 10).

The Open Container Initiative (OCI) Image Format Specification provides some common

label keys (see the “Annotations” section in [41]) to help standardise field names across con-

tainer tools, as shown below. Some keys hold specific content, e.g., org.opencontai-
ners.image.documentation is a URL as character string pointing to documentation

on the image, and org.opencontainers.image.licenses is the SPDX license

identifier. You may also commonly find labels in the deprecated org.label-schema-

specification format, e.g., org.label-schema.description. However, we encourage

the use of the OCI schema in all new and unlabelled projects.

Listing 3. Partial Dockerfile with commonly used labels; note the line breaks within

the values (using the \ character), which were added to limit line length, are not preceded by a

space character, as this space would appear in the value, whereas the line breaks between keys

and values are separated by white space for readability.

. . .

LABEL maintainer = "D. Nüst <daniel.nuest@uni-muenster.de>" \

org.opencontainers.image.authors = "Nüst (daniel.nuest@uni-muenster.de), \

Sochat, Marwick, Eglen, Head, Hirst, and Evans" \

org.opencontainers.image.url = "\

https://github.com/nuest/ten-simple-rules-dockerfiles"

org.opencontainers.image.documentation = "https://nuest.github.io/\

ten-simple-rules-dockerfiles/ten-simple-rules-dockerfiles.pdf"

org.opencontainers.image.version = "1.0.0"

LABEL org.opencontainers.image.vendor = "Ten Simple Institute, Uni of Rules"

org.opencontainers.image.description = "Reproducible workflow image"

org.opencontainers.image.licenses = "Apache-2.0"

LABEL edu.science.data.group.project = "Find out something (Grant #123456)"

edu.science.data.group.name = "Data Science Lab" \

author.orcid = "0000-0002-1825-0097"

Define versions, parameters, and paths once

The ENV instruction in a Dockerfile allows for defining environment variables. These vari-

ables persist inside the container and can be useful, for example, for (a) setting software versions

or paths and reusing them across multiple instructions to avoid mistakes; (b) specifying meta-

data intended to be discovered by installed libraries or software; or (c) adding binaries to the

path (PATH) or library path (LD_LIBRARY_PATH). You should be careful to distinguish these

environment variables from those that might vary and be required at runtime. Listing 4 shows

some examples. For runtime environment variables, either to set a new variable or override one

set in the container, you can use the --env parameter of docker run (see Listings 4 and 6).

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 12 / 24

115

Listing 4. Partial Dockerfile showing usage of environment variables with the ENV
instruction.

. . .

Define number of cores used by PowerfulAlgorithm

ENV POWER_ALG_CORES 2

Install UsefulSoft tool in specific version from source

ENV USEFULSOFT_VERSION = 1.0.0 \

USEFULSOFT_INSTALLDIR = /workspace/bin

RUN wget http://usesoft.url/useful_software/$USEFULSOFT_VERSION/useful-

$USEFULSOFT_VERSION.zip && \

unzip useful-$USEFULSOFT_VERSION.zip -d useful-src && \

cd useful-src && \

bash install.sh --target $USEFULSOFT_INSTALLDIR && \

cd .. && \

rm -r useful-src useful-$USEFULSOFT_VERSION.zip

Put UsefulSoft tool on the path for subsequent instructions

ENV PATH $PATH:$USEFULSOFT_INSTALLDIR

Usage instructions

[. . .]

Run the image (defining the number of cores used):

> docker run --it --env POWER_ALG_CORES 32 my_workflow

Include usage instructions

It is often helpful to provide usage instructions, i.e., how to docker build and docker
run the image, within the Dockerfile, either at the top or bottom where the reader is

likely to find them. Such documentation is especially relevant if bind mounts, specific names,

or ports are important for using the container; see, for example, the final lines of Listing 1.

These instructions are not limited to docker <command> but include the usage of bespoke

scripts, a Makefile, or docker-compose (see Rule 8 and Rule 10). Following a common

coding aphorism, we might say “A Dockerfile you wrote three months ago may just as well

have been written by someone else.” Thus, usage instructions help others, because they quickly

get them running your workflow and interacting with the container in the intended way with-

out reading all of the instructions (a “tl;dr”-kind of usage). Usage instructions also provide a

de facto way of testing that your container works in a way that others can try out. The Dock-
erfile alongside your documentation strategy is a demonstration of your careful work hab-

its and good intentions for transparency and computational reproducibility.

Rule 5: Specify software versions

The reproducibility of your Dockerfile heavily depends on how well you define the ver-

sions of software to be installed in the image. The more specifically you can define them the

better, because using the desired version leads to reproducible builds. The practice of specify-

ing versions of software is called version pinning (e.g., on apt: https://blog.backslasher.net/

my-pinning-guidelines.html). For stable workflows in a scientific context, it is generally

advised to freeze the computing environment explicitly and not rely on the “current” or “lat-

est” software, which is a moving target.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 13 / 24

116

System libraries

System library versions can largely come from the base image tag that you choose to use, e.g.,

ubuntu:18.04, because the operating system’s software repositories are very unlikely to

introduce breaking changes but will predominantly fix errors with newer versions. However,

you can also install specific versions of system packages with the respective package manager.

For example, you might want to demonstrate a bug, prevent a bug in an updated version, or pin

a working version if you suspect an update could lead to a problem. Generally, system libraries

are more stable than software modules supporting analysis scripts, but in some cases, they can

be highly relevant to your workflow. Installing from source is a useful way to install very specific

versions, but it comes at the cost of longer build time and more complex instructions. Here are

some examples of terminal commands that will list the currently installed versions of software

on your system:

• Debian/Ubuntu: dpkg --list

• Alpine: apk -vv info|sort

• CentOS: yum list installed or rpm -qa

When you install several system libraries, it is good practice to add comments about why

the dependencies are needed (see Listing 1). This way, if a piece of software is removed from

the container, it will be easier to remove the system dependencies that are no longer needed,

thereby reducing maintenance overhead: you will not unnecessarily fix problems with a library

that is no longer needed or include long-running installations. A test provided via a

HEALTHCHECK [42] can further ensure proper functioning of your container.

Version control

Software can often be installed directly from a version controlled repository (e.g., GitHub,

GitLab, or Mercurial). It’s recommended to check out a specific version, tag, or commit to

ensure pinning a version for the repository. For example, here is how to clone a specific release

tag (v3.6.1) of the Singularity container software:

RUN git clone -b v3.6.1 https://github.com/hpcng/singularity

In the case that you want to clone and check out a specific commit, you can use the

checkout command.

RUN git clone https://github.com/hpcng/singularity && \

cd singularity && \

git checkout 8a92cf127a49118cab61579bb36b3d51ba5c6434 && \

install steps go here \

Extension packages and programming language modules

If you need to install packages or dependencies for a specific language, package managers are a

good option. Package managers generally provide reliable mirrors or endpoints to download

software; many packages are tested before release, and, most importantly, they provide access to

specific versions. Most package managers have a command line interface that can be used from

RUN commands in your Dockerfile, along with various flavours of “freeze” commands that

can output a text file listing all software packages and versions (cf. https://markwoodbridge.

com/2017/03/05/jupyter-reproducible-science.html cited by [5]). The biggest risk with using

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 14 / 24

117

package managers with respect to a Dockerfile is outsourcing configuration. As an example,

here are configuration files supported by commonly used languages in scientific programming:

• Python: requirements.txt (pip tool, [43]) and environment.yml (Conda, [44])

• R: DESCRIPTION file format [45] and r (“little R”, [46])

• JavaScript: package.json of npm [47]

• Julia: Project.toml and Manifest.toml [48].

In some cases (e.g., Conda) the package manager is also able to make decisions about what

versions to install, which is likely to lead to a non-reproducible build. For this reason, it is nec-

essary to pin the dependency versions. In the case of having few packages, it may be simplest

to write the install steps and versions directly into the Dockerfile (also for clarity, see

Rule 3):

RUN pip install \

geopy = = 1.20.0 \

uszipcode = = 0.2.2

Alternatively, versions may be specified in a separate dependency file (e.g., require-
ments.txt or environment.yml) and COPYied to the image for installation:

COPY requirements.txt.

RUN pip install -r requirements.txt

This modularisation may reduce readability, but provides more flexibility in facilitating dif-

ferent ways of building a reproducible environment, provided the dependency file is under

version control in the same repository (see Rule 6). You can also use package managers to

install software from source code COPYied into the image (see Rule 7). Finally, you can use

many package managers to install software from source obtained from external code manage-

ment repositories, e.g., installing a tool from a specific version tag or commit hash. Be aware of

the risk that such installations may later fail, especially when the external repositories are out

of your control. However, these concerns can be mitigated by running the installation com-

mand with the full URL (including the specific version tag or commit hash), which is helpful

in troubleshooting if problems arise. The version pinning capabilities of these file formats and

package managers are described in their respective documentation.

As a final note on software installation, you should be aware of the USER instruction in a

Dockerfile and how your base image might change the user for particular instructions,

restricting which commands can be run within the container. It is common to use images

with the default user root, which is required for installing system dependencies. However,

you may encounter base images running as a non-root user (e.g., in the Jupyter and Rocker

image stacks) in order to avoid permission problems when mounting files into the container,

especially for “output” files (see Rule 7). We recommend ensuring that the image works with-

out specifying any users, and, if your image deviates from that, we suggest you document it

precisely.

Rule 6: Use version control

As plain text files, Dockerfiles are well suited for use with version control systems. Includ-

ing a Dockerfile alongside your code and data is an effective way to consistently build your

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 15 / 24

118

software, to show visitors to the repository how it is built and used, to solicit feedback and col-

laborate with your peers, and to increase the impact and sustainability of your work (cf. [49]).

Most importantly, you should publish all files COPYied into the image, e.g., test data or files

for software installation from source (see Rule 7), in the same public repository as the Dock-
erfile, e.g., in a research compendium. If you prefer to edit your scripts more interactively

in a running container (e.g., using Jupyter), then it may be more convenient to bind mount

their directory from the host at run time, provided all changes are committed before sharing.

Online collaboration platforms (e.g., GitHub, GitLab) also make it easy to use CI services to

test building and executing your image in an independent environment. CI increases stability

and trust, and it allows for images to be published automatically. Automation strategies exist

to build and test images for multiple platforms and software versions, even with CI. Such

approaches are often used when developing popular software packages for a broad user base

operating across a wide range of target platforms and environments, and they can be leveraged

if you expect your workflow to fall into this category. Furthermore, the commit messages in

your version-controlled repository preserve a record of all changes to the Dockerfile, and

you can use the same versions in tags for both the container’s image and the git repository.

Rule 7: Mount datasets at run time

The role of containers is to provide the computing environment, not to encapsulate (poten-

tially very large) datasets. It is better to insert large data files from the local machine into the

container at runtime, and use the image primarily for the software and dependencies. This

insertion is achieved by using bind mounts. Mounting these files is preferable to using the

ADD/COPY instructions in the Dockerfile, because files persist when the container

instance or image is removed from your system, and the files are more accessible when the

workspace is published. If you want to add local files to the container (and do not need ADD’s

extra features), we recommend COPY because it is simpler and explicit. Volumes are useful

for persisting changes across runs of a container and offer faster file I/O compared to other

mounting methods (particularly useful with databases for example). However, they are less

suitable for reproducibility, since these changes exist within the image (making them less in

line with treating containers as ephemeral; see Rule 10) and are not so easy to access or place

under version control. Unless specific features are needed, bind mounts are preferable to

storage volumes since the contents are directly accessible from both the container and the

host. The files can also be more easily included in the same repository.

Storing data files outside of the container allows handling of very large or sensitive datasets,

e.g., proprietary data or private information. Do not include such data in an image! To avoid

publishing sensitive data by accident, you can add the data directory to the .dockerignore
file, which excludes files and directories from the build context, i.e., the set of files considered

by docker build. Ignoring data files also speeds up the build in cases where there are very

large files or many small files. As an exception, you should include dummy or small test data-

sets in the image to ensure that a container is functional without the actual dataset, e.g., for

automated tests, instructions in the user manual, or peer review (see also “functional testing

logic” in [12]). For all these cases, you should provide clear instructions in the README file on

how to use the actual (or dummy) data, and how to obtain and mount it if it is kept outside of

the image. When publishing your workspace, e.g., on Zenodo, having datasets outside of the

container also makes them more accessible to others, for example, for reuse or analysis.

A mount can also be used to access output data from a container; this can be an extra

mount or the same data directory. Alternatively, you can use the docker cp command to

access files from a running or stopped container, but this requires a specific handling, e.g.,

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 16 / 24

119

naming the container when starting it or using multiple shells, which requires very detailed

instructions for users.

You can use the -v/--volume or preferably --mount flags to docker run to config-

ure bind mounts of directories or files [50], including options, as shown in the following exam-

ples. If the target path exists within the image, the bind mount will replace it for the started

container. (Note, $HOME is an environment variable in UNIX systems representing the path

to the current user’s home directory, e.g., /home/moby, and $(pwd) returns the current

path).

mount directory

docker run --mount type = bind,source = $HOME/project,target = /project

mycontainer

mount directory as read-only

docker run --mount type = bind,src = $HOME/project,dst = /workspace,readonly

mycontainer

mount multple directories, one with write access relative to current path

(Linux)

docker run --mount type = bind,src = $(pwd)/article-x-supplement/data,dst =

/input-data,readonly \–mount type = bind,src = $(pwd)/outputs,dst = /output-

data mycontainer

How your container expects external resources to be mounted into it should be included in

the example commands (see Rule 4). In these commands, you can also make sure to avoid

issues with file permissions by using Docker’s --user option. For example, by default, writ-

ing a new file from inside the container will be owned by user root on your host, because

that is the default user within the container.

Rule 8: Make the image one-click runnable

Containers are very well suited for day-to-day development tasks (see also Rule 10), because

they support common interactive environments for data science and software development.

But they are also useful for a “headless” execution of full workflows. For example, [51] demon-

strates a container for running an agent-based model with video files as outputs, and this arti-

cle’s R Markdown source, which included cells with analysis code, rendered into a PDF in a

container. A workflow that does not support headless execution may even be seen as

irreproducible.

These 2 usages can be configured by the Dockerfile’s author and exposed to the user

based on the Dockerfile’s ENTRYPOINT and CMD instructions. An image’s main purpose

is reflected by the default process and configuration, though the ENTRYPOINT and CMD can

also be changed at runtime. It is considered good practice to have a combination of default

entrypoint and command that meets reasonable user expectations. For example, a container

known to be a workflow should execute the entrypoint to the workflow and perhaps use

--help as the command to print out usage. The container entrypoint should not execute the

workflow, as the user is likely to run the container for basic inspection, and starting an analysis

as a surprise that might write files is undesired. As the maintainer of the workflow, you should

write clear instructions for how to properly interact with the container, both for yourself and

others. A possible weakness with using containers is that they can only provide one default

entrypoint and command. However, tools, e.g., The Scientific Filesystem [52], have been

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 17 / 24

120

developed to expose multiple entrypoints, environments, help messages, labels, and even

install sequences. With plain Docker, you can override the defaults as part of the docker
run command or in an extra Dockerfile using the primary image as a base, as shown in

Listing 5. In any case, you should document different variants very well and potentially capture

build and run commands in a Makefile [27]. If you use a Makefile, then keep it in the

same repository (see Rule 7), and include instructions for its usage (see Rule 4). To support

more complex configuration options, it is helpful to expose settings via a configuration file,

which can be bind mounted from the host [51], via environment variables (see Rule 4 and

[53]), or via wrappers using Docker, such as Kliko [54].

Listing 5. Workflow Dockerfile and derived “runner image” Dockerfile with file

name Dockerfile.runner.

#----- File: Dockerfile -----------------------

base image (interactive)

FROM jupyter/datascience-notebook:python-3.7.6

Usage instructions:

docker build --tag workflow:1.0.

docker run workflow:1.0

#----- File: Dockerfile.runner ----------------

interactive image

FROM workflow:1.0

ENTRYPOINT ["python"]

CMD ["/workspace/run-all.sh"]

Usage instructions:

docker build --tag workflow-runner:1.0 --file Dockerfile.runner.

docker run -e ITERATIONS = 10 -e ALGORITHM = advanced \

--volume /tmp/results:/workspace/output_data workflow-runner:1.0

Interactive graphical interfaces, such as RStudio, Jupyter, or Visual Studio Code, can run in

a container to be used across operating systems and both locally and remotely via a regular web

browser. The HTML-based user interface is exposed over HTTP. Use the EXPOSE instruction

to document the ports of interest for both humans and tools, because they need to be bound

to the host to be accessible to the user using the docker run option -p/--publish
<host port>:<container port>. The container should also print to the screen of

the used ports along with any login credentials needed. For example, this is done in the last few

lines of the output of running a Jupyter Notebook server locally (lines abbreviated):

docker run -p 8888:8888 jupyter/datascience-notebook:7a0c7325e470

[. . .]

[I 15:44:31.323 NotebookApp] The Jupyter Notebook is running at:

[I 15:44:31.323 NotebookApp] http://9027563c6465:8888/?token=6a92d [..]

[I 15:44:31.323 NotebookApp] or http://127.0.0.1:8888/?token=6a92 [..]

[I 15:44:31.323 NotebookApp] Use Control-C to stop this server and [..]

A person who is unfamiliar with Docker but wants to use your image may rely on graphical

tools like ContainDS, Portainer, or the Docker Desktop Dashboard for assistance in managing

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 18 / 24

121

containers on their machine without using the Docker CLI. Such tools will often detect

exposed ports and declared volumes so as to make the user aware of them.

Interactive usage of a command-line interface is quite straightforward to access from con-

tainers, if users are familiar with this style of user interface. Running the container will provide

a shell where a tool can be used and where help or error messages can assist the user. For exam-

ple, complex workflows in any programming language can, with suitable pre-configuration, be

triggered by running a specific script file. If your workflow can be executed via a command

line client, you may use that to validate correct functionality of an image in automated builds,

e.g., by using a small toy example and checking the output by checking successful responses

from HTTP endpoints provided by the container, such as with an HTTP response code of

200, or by using a browser automation tool such as Selenium [55].

The following example runs a simple R command counting the lines in this article’s source

file. The file path is passed as an environment variable.

Listing 6. Passing a parameter via environment variable; working code in example “pass-

parameter-env”, see Examples.

docker run \

–-env CONFIG_PARAM = "/data/ten-simple-rules-dockerfiles.Rmd" \

–-volume $(pwd):/data \

jupyter/datascience-notebook:7a0c7325e470 \

R --quiet -e "l = length(readLines(Sys.getenv(‘CONFIG_PARAM’))); \

print(paste(‘Number of lines: ‘, l))"

> l = length(readLines(Sys.getenv(‘CONFIG_PARAM’)));

> print(paste(‘Number of lines: ‘, l))

[1] "Number of lines: 568"

If there is only a regular desktop application, the host’s window manager can be connected

to the container. Although this raises notable security issues, they can be addressed by using

the “X11 forwarding” natively supported by Singularity [56], which can execute Docker con-

tainers, or by leveraging supporting tools such as x11docker [57]. Other alternatives include

bridge containers [58] and exposing a regular desktop via the browser (e.g., for Jupyter Hub

[59]). This variety of approaches renders seemingly more convenient uncontainerised envi-

ronments unnecessary. Just using one’s local machine is only slightly more comfortable but

much less reproducible and portable.

Rule 9: Order the instructions

You will regularly build an image during development of your workflow. You can take advan-

tage of build caching to avoid execution of time-consuming instructions, e.g., install from a

remote resource or copying a file that gets cached. Therefore, you should keep instructions in

order of least likely to change to most likely to change. Docker will execute the instructions in

the order that they appear in the Dockerfile; when one instruction is completed, the result

is cached, and the build moves to the next one. If you change something in the Dockerfile
and rebuild the image, each instruction is inspected in turn. If it has not changed, the cached

layer is used and the build progresses. Conversely, if the line has changed, that build step is exe-

cuted afresh, and then every subsequent instruction will have to be executed in case the

changed line influences a later instruction. You should regularly rebuild the image using the

--no-cache option to learn about broken instructions as soon as possible (cf. Rule 10 as an

aside, docker image prune --all is a good way to remove unused images, as these

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 19 / 24

122

tend to accrue silently in your system and take up significant disk space). Such a rebuild is also

a good occasion to revisit the order of instructions, e.g., if you appended an instruction at the

end to save time while iteratively developing the Dockerfile, and the formatting. You can

add a version tag to the image before the rebuild to make sure to keep a working environment

at hand. A recommended ordering based on these considerations is as follows, and you can

use comments to visually separate these sections in your file (cf. Listing 1):

1. System libraries

2. Language-specific libraries or modules

a. from repositories (i.e., binaries)

b. from source (e.g., GitHub)

3. Installation of your own software and scripts (if not mounted)

4. Copying data and configuration files (if not mounted)

5. Labels

6. Entrypoint and default command.

Rule 10: Regularly use and rebuild containers

Using containers for research workflows requires not only technical understanding but also an

awareness of risks that can be managed effectively by following a number of good habits, dis-

cussed in this section. While there is no firm rule, if you use a container daily, it is good prac-

tice to rebuild that container every 1 or 2 weeks; this helps identify breaking changes early and

prevents multiple issues compounding on each other. At the time of publication of research

results, it is good practice to save a copy of the image in a public data repository so that readers

of the publication can access the resources that produced the published results.

First, it is a good habit to use your container every time you work on a project and not just

as a final step during publication. If the container is the only platform you use, you can be

highly confident that you have properly documented the computing environment [60]. You

should prioritise this usage over others, e.g., noninteractive execution of a full workflow,

because it gives you personally the highest value and does not limit your use or others’ use of

your data and code at all (see Rule 8).

Second, for reproducibility, we can treat containers as transient and disposable, and even

intentionally rebuild an image at regular intervals. Ideally, containers that we built years ago

should rebuild seamlessly, but this is not necessarily the case, especially with rapidly changing

technology relevant to machine learning and data science. Habitually deleting a container and

performing a cache-less rebuild of the image (a) increases security due to updating underlying

software; (b) helps to reveal issues requiring manual intervention, e.g., changes to code or con-

figuration that are not documented in the Dockerfile but perhaps should be; and (c) allows

you to more incrementally debug issues. This habit can be supported by using continuous

deployment or CI strategies.

In case you need a setup or configuration for the first 2 habits, it is good practice to provide

a Makefile alongside your Dockerfile, which can capture the specific commands. Furthermore,

when you rebuild the image, you can take a fresh look at the Dockerfile and improve it over

time, because it will be hard to apply all rules at once. Various linting tools, either on the com-

mand line [61] or as a web service [62], are available and can be integrated into your workflow.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 20 / 24

123

Third, you can export the image to file and deposit it in a public data repository, where it

not only becomes citable but also provides a snapshot of the actual environment you used at a

specific point in time. You should include instructions for how to import and run the work-

flow based on the image archive, and add your own image tags using semantic versioning (see

Rule 2) for clarity. Depositing the image next to other project files, i.e., data, code, and the used

Dockerfile, in a public repository makes them likely to be preserved, but it is highly

unlikely that over time you will be able to recreate it precisely from the accompanying Dock-
erfile. Publishing the image and the contained metadata therein (e.g., the Docker version

used) may even allow future science historians to emulate the Docker environment. Sharing

the actual image via a registry and a version-controlled Dockerfile together allows you to

freely experiment and continue developing your workflow and keep the image up to date, e.g.,

updating versions of pinned dependencies (see Rule 5) and regular image building (see above).

Finally, for a sanity check and to foster even higher trust in the stability and documentation

of your project, you can ask a colleague or community member to be your code copilot (see

https://twitter.com/Code_Copilot) to interact with your workflow container on a machine of

their own. You can do this shortly before submitting your reproducible workflow for peer

review, so you are well positioned for the future of scholarly communication and open science,

where these may be standard practices required for publication [21,63–65].

Examples

To demonstrate the 10 rules, we maintain a collection of annotated example Dockerfiles

in the examples directory of this article’s GitHub repository. The Dockerfiles were

mostly discovered in public repositories and updated to adhere better to the rules; see https://

github.com/nuest/ten-simple-rules-dockerfiles/tree/master/examples, archived at https://doi.

org/10.5281/zenodo.3878582.

Conclusions

In this article we have provided guidance for using Dockerfiles to create containers for use

and communication in smaller-scale data science research. Reproducibility in research is an

endeavour of incremental improvement and best efforts, not about achieving the perfect solu-

tion; such a solution may be not achievable for many researchers with limited resources, and

its definition may change over time. Even if imperfect, the effort to create and document scien-

tific workflows provides incredibly useful and valuable transparency for a project. We encour-

age researchers to follow these steps taken by their peers to use Dockerfiles to practice

reproducible research, and we encourage them to change the way they communicate towards

“preproducibility” [66], which values openness, transparency, and honesty to find fascinating

problems and advance science. So, we ask researchers, with their best efforts and with their

current knowledge, to strive to write readable Dockerfiles for functional containers that

are realistic about what might break and what is unlikely to break. In a similar vein, we accept

that researchers will freely break these rules if another approach makes more sense for their

use case. Also, we ask that researchers not overwhelm themselves by trying to follow all the

rules right away, but that they set up an iterative process to increase their computing environ-

ment’s manageability over time. Most importantly, we ask researchers to share and exchange

their Dockerfiles freely and to collaborate in their communities to spread the knowledge

about containers as a tool for research and scholarly collaboration and communication.

Acknowledgments

We thank Dav Clark who provided feedback on the preprint [67].

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 21 / 24

124

References
1. Marwick B. How computers broke science—and what we can do to fix it [Internet]. The Conversation.

2015. https://theconversation.com/how-computers-broke-science-and-what-we-can-do-to-fix-it-49938

2. Donoho DL. An invitation to reproducible computational research. Biostatistics. 2010; 11:385–388.

https://doi.org/10.1093/biostatistics/kxq028 PMID: 20538873

3. Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, et al. Best practices for scientific com-

puting. PLoS Biol. 2014; 12:e1001745. https://doi.org/10.1371/journal.pbio.1001745 PMID: 24415924

4. Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough practices in scientific

computing. PLoS Comput Biol. 2017; 13:e1005510. https://doi.org/10.1371/journal.pcbi.1005510

PMID: 28640806

5. Rule A, Birmingham A, Zuniga C, Altintas I, Huang S-C, Knight R, et al. Ten simple rules for writing and

sharing computational analyses in Jupyter Notebooks. PLoS Comput Biol 2019; 15:e1007007. https://

doi.org/10.1371/journal.pcbi.1007007 PMID: 31344036

6. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for reproducible computational research.

PLoS Comput Biol. 2013; 9:e1003285. https://doi.org/10.1371/journal.pcbi.1003285 PMID: 24204232

7. Nüst D. Author Carpentry: Docker for reproducible research [Internet]. 2017. https://nuest.github.io/

docker-reproducible-research/

8. Chapman P. Reproducible data science environments with Docker Phil Chapman’s Blog [Internet].

2018. https://chapmandu2.github.io/post/2018/05/26/reproducible-data-science-environments-with-

docker/

9. rOpenSci Labs. R Docker tutorial [Internet]. 2015. https://ropenscilabs.github.io/r-docker-tutorial/

10. Udemy, Zhbanko V. Docker Containers for Data Science and Reproducible Research [Internet].

Udemy. 2019. https://www.udemy.com/course/docker-containers-data-science-reproducible-research/

11. Psomopoulos FE. Lesson "Docker and Reproducibility" in Workshop "Reproducible analysis and

Research Transparency" [Internet]. Reproducible analysis and Research Transparency. 2017. https://

reproducible-analysis-workshop.readthedocs.io/en/latest/8.Intro-Docker.html

12. Gruening B, Sallou O, Moreno P, Leprevost F da Veiga, Ménager H, Søndergaard D, et al. Recommen-

dations for the packaging and containerizing of bioinformatics software. F1000Research. 2019; 7:742.

https://doi.org/10.12688/f1000research.15140.2 PMID: 31543945

13. Docker Inc. Best practices for writing Dockerfiles [Internet]. Docker Documentation. 2020. https://docs.

docker.com/develop/develop-images/dockerfile_best-practices/

14. Vass T. Intro Guide to Dockerfile Best Practices [Internet]. Docker Blog. 2019. https://www.docker.com/

blog/intro-guide-to-dockerfile-best-practices/

15. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS ONE.

2017; 12:e0177459. https://doi.org/10.1371/journal.pone.0177459 PMID: 28494014

16. Docker Inc. Overview of Docker Compose [Internet]. Docker Documentation. 2019. https://docs.

docker.com/compose/

17. Nüst D, Konkol M, Pebesma E, Kray C, Schutzeichel M, Przibytzin H, et al. Opening the Publication Pro-

cess with Executable Research Compendia. D-Lib Magazine 2017; 23. https://doi.org/10.1045/

january2017-nuest

18. Cohen J, Katz DS, Barker M, Chue Hong NP, Haines R, Jay C. The Four Pillars of Research Software

Engineering. IEEE Softw. 2020. https://doi.org/10.1109/MS.2020.2973362

19. Wikipedia contributors. Docker (software) [Internet]. Wikipedia. 2019. https://en.wikipedia.org/w/index.

php?title=Docker_(software)&oldid=928441083

20. Boettiger C, Eddelbuettel D. An Introduction to Rocker: Docker Containers for R. The R Journal. 2017;

9:527–536. https://doi.org/10.32614/RJ-2017-065

21. Chen X, Dallmeier-Tiessen S, Dasler R, Feger S, Fokianos P, Gonzalez JB, et al. Open is not enough.

Nat Phys. 2019; 15:113. https://doi.org/10.1038/s41567-018-0342-2

22. Brinckman A, Chard K, Gaffney N, Hategan M, Jones MB, Kowalik K, et al. Computing environments

for reproducibility: Capturing the “Whole Tale”. Futur Gener Comput Syst. 2018. https://doi.org/10.

1016/j.future.2017.12.029

23. Code Ocean [Internet]. 2019. https://codeocean.com/

24. Šimko T, Heinrich L, Hirvonsalo H, Kousidis D, Rodrı́guez D, REANA: A System for Reusable Research

Data Analyses. EPJ Web Conf. 2019; 214:06034. https://doi.org/10.1051/epjconf/201921406034

25. Project Jupyter, Bussonnier M, Forde J, Freeman J, Granger B, Head T, et al. Binder 2.0—Reproduc-

ible, interactive, sharable environments for science at scale. Proceedings of the 17th Python in Science

Conference. 2018;113–120. 10.25080/Majora-4af1f417-011

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 22 / 24

125

26. Docker Inc. Dockerfile reference [Internet]. Docker Documentation. 2019. https://docs.docker.com/

engine/reference/builder/

27. Wikipedia contributors. Make (software) [Internet]. Wikipedia. 2019. https://en.wikipedia.org/w/index.

php?title=Make_(software)&oldid=929976465

28. Boettiger C. An Introduction to Docker for Reproducible Research. SIGOPS Oper Syst Rev. 2015;

49:71–79. https://doi.org/10.1145/2723872.2723882

29. Ben Marwick. 1989-excavation-report-Madjebebe. 2015. 10.6084/m9.figshare.1297059

30. Docker Inc. Official Images on Docker Hub [Internet]. Docker Documentation 2019. https://docs.docker.

com/docker-hub/official_images/

31. Nüst D, Hinz M. Containerit: Generating Dockerfiles for reproducible research with R. J Open Source

Softw. 2019; 4:1603. https://doi.org/10.21105/joss.01603

32. Stencila. Stencila/dockta [Internet]. Stencila. 2019. https://github.com/stencila/dockta

33. Cookiecutter contributors. Cookiecutter/cookiecutter [Internet]. cookiecutter. 2019. https://github.com/

cookiecutter/cookiecutter

34. Marwick B. Benmarwick/rrtools [Internet]. 2019. https://github.com/benmarwick/rrtools

35. Docker Inc. Official Images on Docker Hub [Internet]. Docker Documentation 2020. https://docs.docker.

com/docker-hub/official_images/

36. Halchenko YO, Hanke M. Open is Not Enough. Let’s Take the Next Step: An Integrated, Community-

Driven Computing Platform for Neuroscience. Front Neuroinform. 2012; 6. https://doi.org/10.3389/fninf.

2012.00022 PMID: 23055966

37. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the tidyverse. J

Open Source Softw. 2019; 4:1686. https://doi.org/10.21105/joss.01686

38. Preston-Werner T. Semantic Versioning 2.0.0 [Internet]. Semantic Versioning. 2013. https://semver.

org/

39. Docker Inc. Use multi-stage builds [Internet]. Docker Documentation 2020. https://docs.docker.com/

develop/develop-images/multistage-build/

40. Goodman A. Wagoodman/dive [Internet]. 2019. https://github.com/wagoodman/dive

41. Opencontainers. Opencontainers/image-spec v1.0.1—Annotations [Internet]. GitHub. 2017. https://

github.com/opencontainers/image-spec/blob/v1.0.1/annotations.md

42. Docker Inc. Dockerfile reference, healthcheck [Internet]. Docker Documentation. 2020. https://docs.

docker.com/engine/reference/builder/#healthcheck

43. The Python Software Foundation. Requirements Files—pip User Guide [Internet]. 2019. https://pip.

pypa.io/en/stable/user_guide/#requirements-files

44. Continuum Analytics. Managing environments—conda documentation [Internet]. 2017. https://docs.

conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

45. R Core Team. The DESCRIPTION file in "writing r extensions" [Internet]. 1999. https://cran.r-project.

org/doc/manuals/r-release/R-exts.html#The-DESCRIPTION-file

46. Eddelbuettel D, Horner J. Littler: R at the command-line via ‘r’ [Internet]. 2019. https://CRAN.R-project.

org/package=littler

47. npm. Creating a package.json file npm Documentation [Internet]. 2019. https://docs.npmjs.com/

creating-a-package-json-file

48. The Julia Language Contributors. 10. Project.Toml and Manifest.Toml Pkg.Jl [Internet]. 2019. https://

julialang.github.io/Pkg.jl/v1/toml-files/

49. Emsley I, De Roure D. A Framework for the Preservation of a Docker Container International Journal of

Digital Curation. Int J Digit Curation. 2018; 12. https://doi.org/10.2218/ijdc.v12i2.509

50. Docker Inc. Use bind mounts [Internet]. Docker Documentation. 2019. https://docs.docker.com/

storage/bind-mounts/

51. Verstegen JA. JudithVerstegen/PLUC_Mozambique: First release of PLUC for Mozambique [Internet].

Zenodo. 2019. https://doi.org/10.5281/zenodo.3519987

52. Sochat V. The Scientific Filesystem. GigaScience 2018; 7. https://doi.org/10.1093/gigascience/giy023

PMID: 29718213

53. Knoth C, Nüst D. Reproducibility and Practical Adoption of GEOBIA with Open-Source Software in

Docker Containers. Remote Sens. 2017; 9:290. https://doi.org/10.3390/rs9030290

54. Molenaar G, Makhathini S, Girard JN, Smirnov O. Kliko—The scientific compute container format.

Astronomy Comput. 2018; 25:1–9. https://doi.org/10.1016/j.ascom.2018.08.003

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 23 / 24

126

55. Selenium contributors. SeleniumHQ/selenium [Internet]. Selenium. 2019. https://github.com/

SeleniumHQ/selenium

56. Singularity. Frequently Asked Questions Singularity [Internet]. 2019. http://singularity.lbl.gov/archive/

docs/v2-2/faq#can-i-run-x11-apps-through-singularity

57. Viereck M. X11docker: Run GUI applications in Docker containers. J Open Source Softw. 2019;

4:1349. https://doi.org/10.21105/joss.01349

58. Yaremenko E. JAremko/docker-x11-bridge [Internet]. 2019. https://github.com/JAremko/docker-x11-

bridge

59. Panda Y. Yuvipanda/jupyter-desktop-server [Internet]. 2019. https://github.com/yuvipanda/jupyter-

desktop-server

60. Marwick B. README of 1989-excavation-report-Madjebebe. 2015. 10.6084/m9.figshare.1297059

61. A rule-based linter for dockerfiles [Internet]. 2020. https://github.com/projectatomic/dockerfile_lint

62. Dockerfile linter [Internet]. 2020. https://hadolint.github.io/hadolint/

63. Eglen S, Nüst D. CODECHECK: An open-science initiative to facilitate sharing of computer programs

and results presented in scientific publications. Septentrio Conference Series 2019. 10.7557/5.4910

64. Schönbrodt F. Training students for the Open Science future. Nat Hum Behav. 2019; 3:1031–1031.

https://doi.org/10.1038/s41562-019-0726-z PMID: 31602034

65. Eglen SJ, Mounce R, Gatto L, Currie AM, Nobis Y. Recent developments in scholarly publishing to

improve research practices in the life sciences. Emerg Top Life Sci. 2018; 2:775–778. https://doi.org/

10.1042/ETLS20180172

66. Stark PB. Before reproducibility must come preproducibility. Nature. 2018. https://doi.org/10.1038/

d41586-018-05256-0 PMID: 29795524

67. Nüst D, Sochat V, Marwick B, Eglen S, Head T, Hirst T. Ten Simple Rules for Writing Dockerfiles for

Reproducible Data Science [Internet]. Open Science Framework. 2020 Apr. https://doi.org/10.31219/

osf.io/fsd7t

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008316 November 10, 2020 24 / 24

127

9 THe Rockerverse: Packages and
applications for containerisation witH R

Authors & contribution Daniel Nüst (30%), Dirk Eddelbuettel, Dom Bennett, Ro-
brecht Cannoodt, Dav Clark, Gergely Daróczi, Mark Edmondson, Colin Fay,
Ellis Hughes, Lars Kjeldgaard, Sean Lopp, Ben Marwick, Heather Nolis, Jacque-
line Nolis, Hong Ooi, Karthik Ram, Noam Ross, Lori Shepherd, Péter Sólymos,
Tyson Lee Swetnam, Nitesh Turaga, Charlotte Van Petegem, Jason Williams,
Craig Willis, Nan Xiao

Venue The R Journal (SNIP 2020: 3.63) 10.32614/RJ-2020-007

Date 09/2020

Licence Creative Commons Attribution 4.0 International (CC BY 4.0)

Repository https://github.com/nuest/rockerverse-paper/

129

https://www.journalindicators.com/indicators/journal/21100255423
https://doi.org/10.32614/RJ-2020-007
https://github.com/nuest/rockerverse-paper/

CONTRIBUTED RESEARCH ARTICLE 437

The Rockerverse: Packages and

Applications for Containerisation with R
by Daniel Nüst, Dirk Eddelbuettel, Dom Bennett, Robrecht Cannoodt, Dav Clark, Gergely Daróczi,
Mark Edmondson, Colin Fay, Ellis Hughes, Lars Kjeldgaard, Sean Lopp, Ben Marwick, Heather
Nolis, Jacqueline Nolis, Hong Ooi, Karthik Ram, Noam Ross, Lori Shepherd, Péter Sólymos, Tyson
Lee Swetnam, Nitesh Turaga, Charlotte Van Petegem, Jason Williams, Craig Willis, Nan Xiao

Abstract The Rocker Project provides widely used Docker images for R across different application
scenarios. This article surveys downstream projects that build upon the Rocker Project images and
presents the current state of R packages for managing Docker images and controlling containers. These
use cases cover diverse topics such as package development, reproducible research, collaborative work,
cloud-based data processing, and production deployment of services. The variety of applications
demonstrates the power of the Rocker Project specifically and containerisation in general. Across the
diverse ways to use containers, we identified common themes: reproducible environments, scalability
and efficiency, and portability across clouds. We conclude that the current growth and diversification
of use cases is likely to continue its positive impact, but see the need for consolidating the Rockerverse
ecosystem of packages, developing common practices for applications, and exploring alternative
containerisation software.

Introduction

The R community continues to grow. This can be seen in the number of new packages on CRAN, which
is still on growing exponentially (Hornik et al., 2019), but also in the numbers of conferences, open
educational resources, meetups, unconferences, and companies that are adopting R, as exemplified by
the useR! conference series1, the global growth of the R and R-Ladies user groups2, or the foundation
and impact of the R Consortium3. These trends cement the role of R as the lingua franca of statistics, data
visualisation, and computational research. The last few years, coinciding with the rise of R, have also
seen the rise of Docker as a general tool for distributing and deploying of server applications—in fact,
Docker can be called the lingua franca of describing computing environments and packaging software.
Combining both these topics, the Rocker Project (https://www.rocker-project.org/) provides Docker
images with R (see the next section for more details). The considerable uptake and continued evolution
of the Rocker Project has led to numerous projects that extend or build upon Rocker images, ranging
from reproducible4 research to production deployments. As such, this article presents what we
may call the Rockerverse of projects across all development stages: early demonstrations, working
prototypes, and mature products. We also introduce related activities that connect the R language and
environment with other containerisation solutions. Our main contribution is a coherent picture of the
current status of using containers in, with, and for R.

The article continues with a brief introduction of containerisation basics and the Rocker Project,
followed by use cases and applications, starting with the R packages specifically for interacting with
Docker, next the second-level packages that use containers indirectly or only for specific features, and
finally some complex use cases that leverage containers. We conclude by reflecting on the landscape
of packages and applications and point out future directions of development.

Containerisation and Rocker

Docker, an application and service provided by the eponymous company, has, in just a few short
years, risen to prominence for developing, testing, deploying and distributing computer software (cf.
Datadog, 2018; Muñoz, 2019). While related approaches exist, such as LXC5 or Singularity (Kurtzer
et al., 2017), Docker has become synonymous with “containerisation”—the method of taking software
artefacts and bundling them in such a way that use becomes standardized and portable across
operating systems. In doing so, Docker had recognised and validated the importance of one very

1https://www.r-project.org/conferences/
2https://www.r-consortium.org/blog/2019/09/09/r-community-explorer-r-user-groups, https://www.r-

consortium.org/blog/2019/08/12/r-community-explorer
3https://www.r-consortium.org/news/announcements, https://www.r-consortium.org/blog/2019/11/14/data-

driven-tracking-and-discovery-of-r-consortium-activities
4"Reproducible" in the sense of the Claerbout/Donoho/Peng terminology (Barba, 2018).
5https://en.wikipedia.org/wiki/LXC

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
130

CONTRIBUTED RESEARCH ARTICLE 438

important thread that had been emerging, namely virtualisation. By allowing (one or possibly) multiple
applications or services to run concurrently on one host machine without any fear of interference
between them, Docker provides an important scalability opportunity. Beyond this though, Docker
has improved this compartmentalisation by accessing the host system—generally Linux—through
a much thinner and smaller shim than a full operating system emulation or virtualisation. This
containerisation, also called operating-system-level virtualisation (Wikipedia contributors, 2020b),
makes efficient use of operating system resources (Felter et al., 2015) and allows another order of
magnitude in terms of scalability of deployment (cf. Datadog, 2018), because virtualisation may
emulate a whole operating system, a container typically runs only one process. The single process
together with sharing the host’s kernel results in a reduced footprint and faster start times. While
Docker makes use of Linux kernel features, it has become important enough that some required
aspects of running Docker have been added to other operating systems so that those systems can
more efficiently support Docker (Microsoft, 2019b). The success of Docker has even paved the way for
industry collaboration and standardisation (OCI, 2019).

The key accomplishment of Docker as an “application” is to make a “bundled” aggregation of
software, the so-called “image”, available to any system equipped to run Docker, without requiring
much else from the host besides the actual Docker application installation. This is a rather attractive
proposition, and Docker’s very easy to operate user interface has led to widespread adoption and use
of Docker in a variety of domains, e.g., cloud computing infrastructure (e.g., Bernstein, 2014), data
science (e.g., Boettiger, 2015), and edge computing (e.g., Alam et al., 2018). It has also proven to be a
natural match for “cloud deployment” which runs, or at least appears to run, “seamlessly” without
much explicit reference to the underlying machine, architecture or operating system: Containers are
portable and can be deployed with very little dependencies on the host system—only the container
runtime is required. These Docker images are normally built from plain text documents called
Dockerfiles; a Dockerfile has a specific set of instructions to create and document a well-defined
environment, i.e., install specific software and expose specific ports.

For statistical computing and analysis centred around R, the Rocker Project has provided a variety
of Docker containers since it began in 2014 (Boettiger and Eddelbuettel, 2017). The Rocker Project pro-
vides several lines of containers spanning from building blocks with R-release or R-devel, via contain-
ers with RStudio Server and Shiny Server, to domain-specific containers such as rocker/geospatial
(Boettiger et al., 2019). These containers form image stacks, building on top of each other for easier
maintainability (i.e., smaller Dockerfiles), better composability, and to reduce build time. Also of note
is a series of “versioned” containers which match the R release they contain with the then-current set of
packages via the MRAN Snapshot views of CRAN (Microsoft, 2019a). The Rocker Project’s impact and
importance was acknowledged by the Chan Zuckerberg Initiative’s Essential Open Source Software for
Science, which provides funding for the project’s sustainable maintenance, community growth, and
targeting new hardware platforms including GPUs (Chan Zuckerberg Initiative et al., 2019).

Docker is not the only containerisation software. Singularity stems from the domain of high-
performance computing (Kurtzer et al., 2017) and can also run Docker images. Rocker images work
out of the box if the main process is R, e.g., in rocker/r-base, but Singularity does not succeed in
running images where there is an init script, e.g., in containers that by default run RStudio Server. In
the latter case, a Singularity file, a recipe akin to a Dockerfile, needs to be used to make necessary
adjustments. To date, no comparable image stack to the Rocker Project’s images exists on Singularity
Hub. A further tool for running containers is podman, which can also build Dockerfiles and run
Docker images. Proof of concepts exists for using podman to build and run Rocker containers6, but
the prevalence of Docker, especially in the broader user community beyond experts or niche systems
and the vast amount of blog posts and courses for Docker currently cap specific development efforts
for both Singularity and podman in the R community. This might quickly change if the usability
and spread of Singularity or podman increase, or if security features such as rootless/unprivileged
containers, which both these tools support out of the box, become more sought after.

Interfaces for Docker in R

Users interact with the Docker daemon typically through the Docker Command Line Interface (Docker
CLI). However, moving back and forth between an R console and the command line can create friction
in workflows and reduce reproducibility because of manual steps. A number of first-order R packages
provide an interface to the Docker CLI, allowing for the interaction with the Docker CLI from an
R console. Table 1 gives an overview of packages with client functionality, each of which provides
functions for interacting with the Docker daemon. The packages focus on different aspects and support
different stages of a container’s life cycle. As such, the choice of which package is most useful depends

6See https://github.com/nuest/rodman and https://github.com/rocker-org/rocker-versioned/issues/187

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
131

CONTRIBUTED RESEARCH ARTICLE 439

F
u

n
ctio

n
ality

A
zu

reC
o

n
tain

ers

b
ab

elw
h

ale

d
o

ck
erm

ach
in

e

d
o

ck
y

ard

g
o

o
g

leC
lo

u
d

R
u

n
n

er

h
arb

o
r

stev
ed

o
re

Generate a Dockerfile X

Build an image X X X

Execute a container locally or remotely X X X X X X X

Deploy or manage instances in the cloud X X X X X

Interact with an instance (e.g., file transfer) X X X

Manage storage of images X X

Supports Docker and Singularity X

Direct access to Docker API instead of using the CLI X

Installing Docker software X

Table 1: R packages with Docker client functionality.

on the use case at hand as well as on the user’s level of expertise.

harbor (https://github.com/wch/harbor) is no longer actively maintained, but it should be hon-
ourably mentioned as the first R package for managing Docker images and containers. It uses the sys
package (Ooms, 2019) to run system commands against the Docker CLI, both locally and through an
SSH connection, and it has convenience functions, e.g., for listing and removing containers/images
and for accessing logs. The outputs of container executions are converted to appropriate R types.
The Docker CLI’s basic functionality, although it evolves quickly and with little concern for avoiding
breaking changes, has remained unchanged in core functions, meaning that a core function such as
harbor::docker_run(image = "hello-world") still works despite its stopped development.

stevedore is currently the most powerful Docker client in R (FitzJohn, 2020). It interfaces with the
Docker daemon over the Docker HTTP API7 via a Unix socket on Linux or MacOS, over a named pipe
on Windows, or over an HTTP/TCP connection. The package is the only one not using system calls to
the docker CLI tool for managing images and containers. The package thereby enables connections to
remote Docker instances without direct configuration of the local Docker daemon. Furthermore using
the API gives access to information in a structured way, is system independent, and is likely more
reliable than parsing command line output. stevedore’s own interface is automatically generated
based on the OpenAPI specification of the Docker daemon, but it is still similar to the Docker CLI.
The interface is similar to R6 objects, in that an object of class "stevedore_object" has a number of
functions attached to it that can be called, and multiple specific versions of the Docker API can be
supported thanks to the automatic generation8.

AzureContainers is an interface to a number of container-related services in Microsoft’s Azure
Cloud (Ooi, 2019). While it is mainly intended for working with Azure, as a convenience feature it
includes lightweight, cross-platform shells to Docker and Kubernetes (tools kubectl and helm). These
can be used to create and manage arbitrary Docker images and containers, as well as Kubernetes
clusters on any platform or cloud service.

googleCloudRunner is an interface with Google Cloud Platform container-related services, with
tools to make it easier for R users to interact with them for common use cases (Edmondson, 2020). It
includes deployment functions for creating R APIs using the Docker-based Cloud Run service. Users
can create long running batch jobs calling any Docker image including Rocker via Cloud Build and
schedule services using Cloud Scheduler.

babelwhale provides a unified interface to interact with Docker and Singularity containers (Can-
noodt and Saelens, 2019). Users can, for example, execute a command inside a container, mount a
volume, or copy a file with the same R commands for both container runtimes.

7https://docs.docker.com/engine/api/latest/
8See https://github.com/richfitz/stevedore/blob/master/development.md.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
132

CONTRIBUTED RESEARCH ARTICLE 440

dockyard (https://github.com/thebioengineer/dockyard) has the goal of lowering the barrier
to creating Dockerfiles, building Docker images, and deploying Docker containers. The package
follows the increasingly used piping paradigm of the Tidyverse-style (Wickham et al., 2019) of program-
ming for chaining R functions representing the instructions in a Dockerfile. An existing Dockerfile

can be used as a template. dockyard also includes wrappers for common steps, such as installing
an R package or copying files, and provides built-in functions for building an image and running a
container, which make Docker more approachable within a single R-based user interface.

dockermachine (https://github.com/cboettig/dockermachine) is an R package to provide a
convenient interface to Docker Machine from R. The CLI tool docker-machine allows users to create
and manage a virtual host on local computers, local data centres, or at cloud providers. A local Docker
installation can be configured to transparently forward all commands issued on the local Docker CLI
to a selected (remote) virtual host. Docker Machine was especially crucial for local use in the early
days of Docker, when no native support was available for Mac or Windows computers, but it remains
relevant for provisioning on remote systems. The package has not received any updates for two
years, but it is functional with a current version of docker-machine (0.16.2). It potentially lowers the
barriers for R users to run containers on various hosts if they perceive that using the Docker Machine
CLI directly as a barrier and it enables scripted workflows with remote processing.

Use cases and applications

Image stacks for communities of practice

Bioconductor (https://bioconductor.org/) is an open-source, open development project for the
analysis and comprehension of genomic data (Gentleman et al., 2004). As of October 30th 2019, the
project consists of 1823 R software packages, as well as packages containing annotation or experiment
data. Bioconductor has a semi-annual release cycle, where each release is associated with a particular
version of R, and Docker images are provided for current and past versions of Bioconductor for
convenience and reproducibility. All images, which are described on the Bioconductor web site (see
https://bioconductor.org/help/docker/), are created with Dockerfiles maintained on GitHub
and distributed through Docker Hub9. Bioconductor’s “base” Docker images are built on top of the
rocker/rstudio image. Bioconductor installs packages based on the R version in combination with the
Bioconductor version and, therefore, uses Bioconductor version tagging devel and RELEASE_X_Y, e.g.,
RELEASE_3_10. Past and current combinations of R and Bioconductor will therefore be accessible via
specific image tags.

The Bioconductor Dockerfile selects the desired R version from Rocker images, adds required
system dependencies, and uses the BiocManager package for installing appropriate versions of Bio-
conductor packages (Morgan, 2019). A strength of this approach is that the responsibility for complex
software configuration and customization is shifted from the user to the experienced Bioconductor core
team. However, a recent audit of the Bioconductor image stack Dockerfile led to the deprecation of
several community-maintained images, because the numerous specific images became too hard to
understand, complex to maintain, and cumbersome to customise. As part of the simplification, a recent
innovation is the bioconductor_docker:devel image, which emulates the Bioconductor environment
for nightly builds as closely as possible. This image contains the environment variables and the system
dependencies needed to install and check almost all Bioconductor software packages (1813 out of 1823).
It saves users and package developers from creating this environment themselves. Furthermore, the
image is configured so that .libPaths() has ‘/usr/local/lib/R/host-site-library’ as the first loca-
tion. Users mounting a location on the host file system to this location can persistently manage installed
packages across Docker containers or image updates. Many R users pursue flexible workflows tailored
to particular analysis needs rather than standardized workflows. The new bioconductor_docker

image is well suited for this preference, while bioconductor_docker:devel provides developers with
a test environment close to Bioconductor’s build system.

Data science is a widely discussed topic in all academic disciplines (e.g., Donoho, 2017). These
discussions have shed light on the tools and craftspersonship behind the analysis of data with
computational methods. The practice of data science often involves combining tools and software
stacks and requires a cross-cutting skillset. This complexity and an inherent concern for openness and
reproducibility in the data science community has led to Docker being used widely. The remainder of
this section presents example Docker images and image stacks featuring R intended for data science.

• The Jupyter Docker Stacks project is a set of ready-to-run Docker images containing Jupyter
applications and interactive computing tools (Jupyter, 2018). The jupyter/r-notebook image

9See https://github.com/Bioconductor/bioconductor_docker and https://hub.docker.com/u/bioconductor
respectively.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
133

CONTRIBUTED RESEARCH ARTICLE 441

includes R and “popular packages”, and naturally also the IRKernel (https://irkernel.github.
io/), an R kernel for Jupyter, so that Jupyter Notebooks can contain R code cells. R is also
included in the catchall jupyter/datascience-notebook image10. For example, these images
allow users to quickly start a Jupyter Notebook server locally or build their own specialised
images on top of stable toolsets. R is installed using the Conda package manager11, which can
manage environments for various programming languages, pinning both the R version and the
versions of R packages12.

• Kaggle provides the gcr.io/kaggle-images/rstats image (previously kaggle/rstats) and cor-
responding Dockerfile for usage in their Machine Learning competitions and easy access to
the associated datasets. It includes machine learning libraries such as Tensorflow and Keras
(see also image rocker/ml in Section Common or public work environments), and it also
configures the reticulate package (Ushey et al., 2019). The image uses a base image with all pack-
ages from CRAN, gcr.io/kaggle-images/rcran, which requires a Google Cloud Build because
Docker Hub would time out13. The final extracted image size is over 25 GB, which calls into
question whether having everything available is actually convenient.

• The Radiant project provides several images, e.g., vnijs/rsm-msba-spark, for their browser-
based business analytics interface based on Shiny (Chang et al., 2019), and for use in education
as part of an MSc course14. As data science often applies a multitude of tools, this image favours
inclusion over selection and features Python, Postgres, JupyterLab and Visual Studio Code
besides R and RStudio, bringing the image size up to 9 GB.

• Gigantum (http://gigantum.com/) is a platform for open and decentralized data science with a
focus on using automation and user-friendly tools for easy sharing of reproducible computa-
tional workflows. Gigantum builds on the Gigantum Client (running either locally or on a remote
server) for development and execution of data-focused Projects, which can be stored and shared
via the Gigantum Hub or via a zipfile export. The Client is a user-friendly interface to a backend
using Docker containers to package, build, and run Gigantum projects. It is configured to use a
default set of Docker base images (https://github.com/gigantum/base-images), and users are
able to define and configure their own custom images. The available images include two with R
based on Ubuntu Linux and these have the c2d4u CRAN PPA pre-configured for installation of
binary R packages15. The R images vary in the included authoring environment, i.e., Jupyter
in r-tidyverse or both Jupyter & RStudio in rstudio-server. The independent image stack
can be traced back to the Gigantum environment and its features. The R images are based on
Gigantum’s python3-minimal image, originally to keep the existing front-end configuration, but
also to provide consistent Python-to-R interoperability. The Dockerfiles also use build args to
specify bases, for example for different versions of NVIDIA CUDA for GPU processing16, so that
appropriate GPU drivers can be enabled automatically when supported. Furthermore, Gigan-
tum’s focus lies on environment management via GUI and ensuring a smooth user interaction,
e.g., with reliable and easy conflict detection and resolution. For this reason, project repositories
store authoritative package information in a separate file per package, allowing Git to directly
detect conflicts and changes. A Dockerfile is generated from this description that inherits from
the specified base image, and additional custom Docker instructions may be appended by users,
though Gigantum’s default base images do not currently include the littler tool, which is
used by Rocker to install packages within Dockerfiles. Because of these specifics, instructions
from rocker/r-ubuntu could not be readily re-used in this image stack (see Section Conclu-
sions). Both approaches enable the apt package manager (Wikipedia contributors, 2020a) as an
installation method, and this is exposed via the GUI-based environment management17. The
image build and publication process is scripted with Python and JSON template configuration
files, unlike Rocker images which rely on plain Dockerfiles. A further reason in the creation of
an independent image stack were project constraints requiring a Rocker-incompatible licensing
of the Dockerfiles, i.e., the MIT License.

10https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html
11https://conda.io/
12See jupyter/datascience-notebook’s Dockerfile at https://github.com/jupyter/docker-

stacks/blob/master/datascience-notebook/Dockerfile#L47.
13Originally, a stacked collection of over 20 images with automated builds on Docker Hub was used,

see https://web.archive.org/web/20190606043353/http://blog.kaggle.com/2016/02/05/how-to-get-started-
with-data-science-in-containers/ and https://hub.docker.com/r/kaggle/rcran/dockerfile

14‘Dockerfile‘ available on GitHub: https://github.com/radiant-rstats/docker.
15https://docs.gigantum.com/docs/using-r
16See https://github.com/gigantum/base-images/blob/master/_templates/python3-minimal-

template/Dockerfile for the Dockerfile of python3-minimal.
17See https://docs.gigantum.com/docs/environment-management

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
134

CONTRIBUTED RESEARCH ARTICLE 442

Capture and create environments

Community-maintained images provide a solid basis so users can meet their own individual require-
ments. Several second-order R packages attempt to streamline the process of creating Docker images
and using containers for specific tasks, such as running tests or rendering reproducible reports. While
authoring and managing an environment with Docker by hand is possible and feasible for experts18,
the following examples show that when environments become too cumbersome to create manually,
automation is a powerful tool. In particular, the practice of version pinning, with system package
managers for different operating systems and with packages remotes and versions or by using MRAN
for R, can greatly increase the reproducibility of built images and are common approaches.

dockerfiler is an R package designed for building Dockerfiles straight from R (Fay, 2019). A
scripted creation of a Dockerfile enables iteration and automation, for example for packaging appli-
cations for deployment (see Deployment and continuous delivery). Developers can retrieve system
requirements and package dependencies to write a Dockerfile, for example, by leveraging the tools
available in R to parse a DESCRIPTION file.

containerit (https://github.com/o2r-project/containerit/) attempts to take this one step fur-
ther and includes these tools to automatically create a Dockerfile that can execute a given workflow
(Nüst and Hinz, 2019). containerit accepts an R object of classes "sessionInfo" or "session_info"
as input and provides helper functions to derive these from workflows, e.g., an R script or R Mark-
down document, by analysing the session state at the end of the workflow. It relies on the sysreqs
(https://github.com/r-hub/sysreqs/) package and it’s mapping of package system dependencies
to platform-specific installation package names19. containerit uses stevedore to streamline the user
interaction and improve the created Dockerfiles, e.g., by running a container for the desired base
image to extract the already available R packages.

dockr is a similar package focusing on the generation of Docker images for R packages, in which
the package itself and all of the R dependencies, including local non-CRAN packages, are available
(Kjeldgaard, 2019a,b). dockr facilitates the organisation of code in the R package structure and the
resulting Docker image mirrors the package versions of the current R session. Users can manually add
statements for non-R dependencies to the Dockerfile.

liftr (Xiao, 2019) aims to solve the problem of persistent reproducible reporting in statistical
computing based on the R Markdown format (Xie et al., 2018). The irreproducibility of authoring
environments can become an issue for collaborative documents and large-scale platforms for pro-
cessing documents. liftr makes the dynamic R Markdown document the main and sole workflow
control file and the only file that needs to be shared between collaborators for consistent environments,
e.g. demonstrated in the DockFlow project (https://dockflow.org). It introduces new fields to the
document header, allowing users to manually declare the versioned dependencies required for ren-
dering the document. The package then generates a Dockerfile from this metadata and provides a
utility function to render the document inside a Docker container, i.e., render_docker("foo.Rmd").
An RStudio addin even allows compilation of documents with the single push of a button.

System dependencies are the domain of Docker, but for a full description of the computing
environment, one must also manage the R version and the R packages. R versions are available via the
versioned Rocker image stack (Boettiger and Eddelbuettel, 2017). r-online leverages these images and
provides an app for helping users to detect breaking changes between different R versions and for
historic exploration of R. With a standalone NodeJS app or r-online, the user can compare a piece of
code run in two separate versions of R. Internally, r-online opens one or two Docker instances with the
given version of R based on Rocker images, executes a given piece of code, and returns the result to
the user. Regarding R package management, this can be achieved with MRAN, or with packages such
as checkpoint (Ooi et al., 2020) and renv (Ushey, 2020), which can naturally be applied within images
and containers. For example, renv helps users to manage the state of the R library in a reproducible
way, further providing isolation and portability. While renv does not cover system dependencies,
the renv-based environment can be transferred into a container either by restoring the environment
based on the main configuration file renv.lock or by storing the renv-cache on the host and not in the
container (Ushey, 2019). With both the system dependencies and R packages consciously managed
in a Docker image, users can start using containers as the only environment for their workflows,
which allows them to work independently of physical computers20 and to assert a specific degree of
confidence in the stability of a developed software (cf. README.Rmd in Marwick, 2017).

18See, e.g., this tutorial by RStudio on how to manage environments and package versions and to ensure
deterministic image builds with Docker: https://environments.rstudio.com/docker.

19See https://sysreqs.r-hub.io/.
20Allowing them to be digital "nomads", cf. J. Bryan’s https://github.com/jennybc/docker-why.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
135

CONTRIBUTED RESEARCH ARTICLE 443

Development, debugging, and testing

Containers can also serve as playgrounds and provide specific or ad hoc environments for the purposes
of developing R packages. These environments may have specific versions of R, of R extension
packages, and of system libraries used by R extension packages, and all of the above in a specific
combination.

First, such containers can greatly facilitate fixing bugs and code evaluation, because developers
and users can readily start a container to investigate a bug report or try out a piece of software
(cf. Ooms, 2017). The container can later be discarded and does not affect their regular system.
Using the Rocker images with RStudio, these disposable environments lack no development comfort
(cf. Section Packaging research reproducibly). Ooms (2017) describes how docker exec can be used
to get a root shell in a container for customisation during software evaluation without writing a
Dockerfile. Eddelbuettel and Koenker (2019) describes an example of how a Docker container was
used to debug an issue with a package only occurring with a particular version of Fortran, and using
tools which are not readily available on all platforms (e.g., not on macOS).

Second, the strong integration of system libraries in core packages in the R-spatial community
makes containers essential for stable and proactive development of common classes for geospatial data
modelling and analysis. For example, GDAL (GDAL/OGR contributors, 2019) is a crucial library in
the geospatial domain. GDAL is a system dependency allowing R packages such as sf, which provides
the core data model for geospatial vector data, or rgdal, to accommodate users to be able to read and
write hundreds of different spatial raster and vector formats (Pebesma, 2018; Bivand et al., 2019). sf
and rgdal have hundreds of indirect reverse imports and dependencies and, therefore, the maintainers
spend a lot of effort trying not to break them. Purpose-built Docker images are used to prepare for
upcoming releases of system libraries, individual bug reports, and for the lowest supported versions
of system libraries21.

Third, special-purpose images exist for identifying problems beyond the mere R code, such as
debugging R memory problems. These images significantly reduce the barriers to following complex
steps for fixing memory allocation bugs (cf. Section 4.3 in R Core Team, 1999). These problems are hard
to debug and critical, because when they do occur they lead to fatal crashes. rocker/r-devel-san
and rocker/r-devel-ubsan-clang are Docker images that have a particularly configured version
of R to trace such problems with gcc and clang compilers, respectively (cf. sanitizers for examples,
Eddelbuettel, 2014). wch/r-debug is a purpose-built Docker image with multiple instrumented builds
of R, each with a different diagnostic utility activated.

Fourth, containers are useful for testing R code during development. To submit a package to
CRAN, an R package must work with the development version of R, which must be compiled locally;
this can be a challenge for some users. The R-hub project provides “a collection of services to help R
package development”, with the package builder as the most prominent one (R-hub project, 2019). R-hub
makes it easy to ensure that no errors occur, but fixing errors still often warrants a local setup, e.g.,
using the image rocker/r-devel, as is testing packages with native code, which can make the process
more complex (cf. Eckert, 2018). The R-hub Docker images can also be used to debug problems locally
using various combinations of Linux platforms, R versions, and compilers22. The images go beyond
the configurations, or flavours, used by CRAN for checking packages23, e.g., with CentOS-based images,
but they lack a container for checking on Windows or OS X. The images greatly support package
developers to provide support on operating systems with which they are not familiar. The package
dockertest (https://github.com/traitecoevo/dockertest/) is a proof of concept for automatically
generating Dockerfiles and building images specifically to run tests24. These images are accompanied
by a special launch script so the tested source code is not stored in the image; instead, the currently
checked in version from a local Git repository is cloned into the container at runtime. This approach
separates the test environment, test code, and current working copy of the code. Another use case
where a container can help to standardise tests across operating systems is detailed the vignettes of
the package RSelenium (Harrison, 2019). The package recommends Docker for running the Selenium
Server application needed to execute test suites on browser-based user interfaces and webpages, but it
requires users to manually manage the containers.

Fifth, Docker images can be used on continuous integration (CI) platforms to streamline the
testing of packages. Ye (2019) describes how they speed up the process of testing by running tasks on
Travis CI within a container using docker exec, e.g., the package check or rendering of documentation.
Cardozo (2018) also saved time with Travis CI by re-using the testing image as the basis for an image

21Cf. https://github.com/r-spatial/sf/tree/master/inst/docker, https://github.com/Nowosad/rspatial_proj6,
and https://github.com/r-spatial/sf/issues/1231

22See https://r-hub.github.io/rhub/articles/local-debugging.html and https://blog.r-hub.io/2019/04/25/r-
devel-linux-x86-64-debian-clang/

23https://cran.r-project.org/web/checks/check_flavors.html
24dockertest is not actively maintained, but mentioned still because of its interesting approach.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
136

CONTRIBUTED RESEARCH ARTICLE 444

intended for publication on Docker Hub. r-ci is, in turn, used with GitLab CI, which itself is built on
top of Docker images: the user specifies a base Docker image and control code, and the whole set of
tests is run inside a container. The r-ci image stack combines rocker versioning and a series of tools
specifically designed for testing in a fixed environment with a customized list of preinstalled packages.
Especially for long-running tests or complex system dependencies, these approaches to separate
installation of build dependencies with code testing streamline the development process. Containers
can also simplify the integration of R software into larger, multi-language CI pipelines. Furthermore,
with each change, even this manuscript is rendered into a PDF and deployed to a GitHub-hosted
website (see .travis.yml and Dockerfile in the manuscript repository), not because of concern about
time, but to control the environment used on a CI server. This gives, on the one hand, easy access after
every update of the R Markdown source code and, on the other hand, a second controlled environment
to make sure that the article renders successfully and correctly.

Processing

The portability of containerised environments becomes particularly useful for improving expensive
processing of data or shipping complex processing pipelines. First, it is possible to offload complex
processing to a server or clouds and also to execute processes in parallel to speed up or to serve
many users. batchtools provides a parallel implementation of the Map function for various schedulers
(Lang et al., 2017). For example, the package can schedule jobs with Docker Swarm. googleCom-
puteEngineR has the function gce_vm_cluster() to create clusters of 2 or more virtual machines,
running multi-CPU architectures (Edmondson, 2019). Instead of running a local R script with the
local CPU and RAM restrictions, the same code can be processed on all CPU threads of the cluster of
machines in the cloud, all running a Docker container with the same R environments. googleCom-
puteEngineR integrates with the R parallelisation package future (Bengtsson, 2020a) to enable this
with only a few lines of R code25. Google Cloud Run is a CaaS (Containers as a Service) platform. Users
can launch containers using any Docker image without worrying about underlying infrastructure in
a so-called serverless configuration. The service takes care of network ingress, scaling machines up
and down, authentication, and authorisation—all features which are non-trivial for a developer to
build and maintain on their own. This can be used to scale up R code to millions of instances if need
be with little or no changes to existing code, as demonstrated by the proof of concept cloudRunR26,
which uses Cloud Run to create a scalable R-based API using plumber (Trestle Technology, LLC,
2018). Google Cloud Build and the Google Container Registry are a continuous integration service
and an image registry, respectively, that offload building of images to the cloud, while serving the
needs of commercial environments such as private Docker images or image stacks. As Google Cloud
Build itself can run any container, the package googleCloudRunner demonstrates how R can be used
as the control language for one-time or batch processing jobs and scheduling of jobs27. drake is a
workflow manager for data science projects (Landau, 2018). It features implicit parallel computing and
automated detection of the parts of the work that actually needs to be re-executed. drake has been
demonstrated to run inside containers for high reproducibility28. Furthermore, drake workflows have
been shown to use future package’s function makeClusterPSOCK() for sending parts of the workflow
to a Docker image for execution29 (see package’s function documentation; Bengtsson, 2020b). In the
latter case, the container control code must be written by the user, and the future package ensures
that the host and worker can connect for communicating over socket connections. RStudio Server
Pro includes a functionality called Launcher (since version 1.2, released in 2019). It gives users the
ability to spawn R sessions and background/batch jobs in a scalable way on external clusters, e.g.,
Kubernetes based on Docker images or Slurm clusters, and optionally, with Singularity containers.
A benefit of the proprietary Launcher software is the ability for R and Python users to leverage
containerisation’s advantages in RStudio without writing specific deployment scripts or learning
about Docker or managing clusters at all.

Second, containers are perfectly suited for packaging and executing software pipelines and
required data. Containers allow for building complex processing pipelines that are independent
of the host programming language. Due to its original use case (see Introduction), Docker has no
standard mechanisms for chaining containers together; it lacks definitions and protocols for how
to use environment variables, volume mounts, and/or ports that could enable the transfer of input
(parameters and data) and output (results) to and from containers. Some packages, e.g., containerit,

25https://cloudyr.github.io/googleComputeEngineR/articles/massive-parallel.html
26https://github.com/MarkEdmondson1234/cloudRunR
27https://code.markedmondson.me/googleCloudRunner/articles/cloudbuild.html
28See for example https://github.com/joelnitta/pleurosoriopsis or https://gitlab.com/ecohealthalliance/drake-

gitlab-docker-example, the latter even running in a continuous integration platform (cf. Development, debugging,
and testing.

29https://docs.ropensci.org/drake/index.html?q=docker#with-docker

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
137

CONTRIBUTED RESEARCH ARTICLE 445

provide Docker images that can be used very similar to a CLI, but this usage is cumbersome30. outsider
(https://docs.ropensci.org/outsider/) tackles the problem of integrating external programs into
an R workflow without the need for users to directly interact with containers (Bennett et al., 2020).
Installation and usage of external programs can be difficult, convoluted and even impossible if
the platform is incompatible. Therefore, outsider uses the platform-independent Docker images to
encapsulate processes in outsider modules. Each outsider module has a Dockerfile and an R package
with functions for interacting with the encapsulated tool. Using only R functions, an end-user can
install a module with the outsider package and then call module code to seamlessly integrate a
tool into their own R-based workflow. The outsider package and module manage the containers
and handle the transmission of arguments and the transfer of files to and from a container. These
functionalities also allow a user to launch module code on a remote machine via SSH, expanding the
potential computational scale. Outsider modules can be hosted code-sharing services, e.g., on GitHub,
and outsider contains discovery functions for them.

Deployment and continuous delivery

The cloud is the natural environment for containers, and, therefore, containers are the go-to mechanism
for deploying R server applications. More and more continuous integration (CI) and continuous
delivery (CD) services also use containers, opening up new options for use. The controlled nature of
containers, i.e., the possibility to abstract internal software environment from a minimal dependency
outside of the container is crucial, for example to match test or build environments with production
environments or transfer runnable entities to as-a-service infrastructures.

First, different packages use containers for the deployment of R and Shiny apps. Shiny is a pop-
ular package for creating interactive online dashboards with R, and it enables users with very diverse
backgrounds to create stable and user-friendly web applications (Chang et al., 2019). ShinyProxy
(https://www.shinyproxy.io/) is an open-source tool to deploy Shiny apps in an enterprise context,
where it features single sign-on, but it can also be used in scientific use cases (e.g., Savini et al., 2019;
Glouzon et al., 2017). ShinyProxy uses Docker containers to isolate user sessions and to achieve scala-
bility for multi-user scenarios with multiple apps. ShinyProxy itself is written in Java to accommodate
corporate requirements and may itself run in a container for stability and availability. The tool is built
on ContainerProxy (https://www.containerproxy.io/), which provides similar features for executing
long-running R jobs or interactive R sessions. The started containers can run on a regular Docker
host but also in clusters. Continuous integration and deployment (CI/CD) for Shiny applications
using Shinyproxy can be achieved, e.g., via GitLab pipelines or with a combination of GitHub and
Docker Hub. A pipeline can include building and checking R packages and Shiny apps. After the
code has passed the checks, Docker images are built and pushed to the container registry. The pipeline
finishes with triggering a webhook on the server, where the deployment script is executed. The script
can update configurations or pull the new Docker images. There is a ShinyProxy 1-Click App in the
DigitalOcean marketplace that is set up with these webhooks. The documentation explains how to set
up HTTPS with ShinyProxy and webhooks.

Another example is the package golem, which makes heavy use of dockerfiler when it comes to
creating the Dockerfile for building and deploying production-grade Shiny applications (Guyader
et al., 2019). googleComputeEngineR enables quick deployments of key R services, such as RStudio
and Shiny, onto cloud virtual machines (VMs) with Google Cloud Compute Engine (Edmondson, 2019).
The package utilises Dockerfiles to move the labour of setting up those services from the user to a
premade Docker image, which is configured and run in the cloud VM. For example, by specifying the
template template="rstudio" in functions gce_vm_template() and gce_vm() an up-to-date RStudio
Server image is launched for development work, whereas specifying template="rstudio-gpu" will
launch an RStudio Server image with a GPU attached, etc.

Second, containers can be used to create platform installation packages in a DevOps setting. The
OpenCPU system provides an HTTP API for data analysis based on R. Ooms (2017) describes how
various platform-specific installation files for OpenCPU are created using Docker Hub. The automated
builds install the software stack from the source code on different operating systems; afterwards a
script file downloads the images and extracts the OpenCPU binaries.

Third, containers can greatly facilitate the deployment to existing infrastructures. Kubernetes
(https://kubernetes.io/) is a container-orchestration system for managing container-based applica-
tion deployment and scaling. A cluster of containers, orchestrated as a single deployment, e.g., with
Kubernetes, can mitigate limitations on request volumes or a container occupied with a computa-
tionally intensive task. A cluster features load-balancing, autoscaling of containers across numerous
servers (in the cloud or on premise), and restarting failed ones. Many organisations already use a
Kubernetes cluster for other applications, or a managed cluster can be acquired from service providers.

30https://o2r.info/containerit/articles/container.html

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
138

CONTRIBUTED RESEARCH ARTICLE 446

Docker containers are used within Kubernetes clusters to hold native code, for which Kubernetes
creates a framework around network connections and scaling of resources up and down. Kubernetes
can thereby host R applications, big parallel tasks, or scheduled batch jobs in a scalable way, and
the deployment can even be triggered by changes to code repositories (i.e., CD, see Edmondson,
2018). The package googleKubernetesR (https://github.com/RhysJackson/googleKubernetesR) is
a proof of concept for wrapping the Google Kubernetes Engine API, Google’s hosted Kubernetes
solution, in an easy-to-use R package. The package analogsea provides a way to programmatically
create and destroy cloud VMs on the Digital Ocean platform (Chamberlain et al., 2019). It also in-
cludes R wrapper functions to install Docker in such a VM, manage images, and control containers
straight from R functions. These functions are translated to Docker CLI commands and transferred
transparently to the respective remote machine using SSH. AzureContainers is an umbrella package
that provides interfaces for three commercial services of Microsoft’s Azure Cloud, namely Container
Instances for running individual containers, Container Registry for private image distribution, and
Kubernetes Service for orchestrated deployments. While a package like plumber provides the infras-
tructure for turning an R workflow into a web service, for production purposes it is usually necessary
to take into account scalability, reliability and ease of management. AzureContainers provides an
R-based interface to these features and, thereby, simplifies complex infrastructure management to
a number of R function calls, given an Azure account with sufficient credit31. Heroku is another
cloud platform as a service provider, and it supports container-based applications. heroku-docker-r
(https://github.com/virtualstaticvoid/heroku-docker-r) is an independent project providing a
template for deploying R applications based on Heroku’s image stack, including multiple examples
for interfacing R with other programming languages. Yet the approach requires manual management
of the computing environment.

Independent integrations of R for different cloud providers lead to repeated efforts and code
fragmentation. To mitigate these problems and to avoid vendor lock-in motivated the OpenFaaS
project. OpenFaas facilitates the deployment of functions and microservices to Kubernetes or Docker
Swarm. It is language-agnostic and provides auto-scaling, metrics, and an API gateway. Reduced
boilerplate code is achieved via templates. Templates for R32 are provided based on Rocker’s Debian
and R-hub’s r-minimal Alpine images. The templates use multi-stage Docker builds to combine R base
images with the OpenFaaS ‘watchdog’, a tiny Golang web server. The watchdog marshals an HTTP
request and invokes the actual application. The R session uses plumber or similar packages for the
API endpoint with packages and data preloaded, thus minimizing response times.

The prevalence of Docker in industry naturally leads to the use of R in containers, as companies
already manage platforms in Docker containers. These products often entail a large amount of open-
source software in combination with proprietary layers adding the relevant commercialisation features.
One such example is RStudio’s data science platform RStudio Team. It allows teams of data scientists
and their respective IT/DevOps groups to develop and deploy code in R and Python around the
RStudio Open-Source Server inside of Docker images, without requiring users to learn new tools or
directly interact with containers. The best practices for running RStudio with Docker containers as
well as Docker images for RStudio’s commercial products are publicly available.

Using R to power enterprise software in production environments

R has been historically viewed as a tool for analysis and scientific research, but not for creating software
that corporations can rely on for production services. However, thanks to advancements in R running
as a web service, along with the ability to deploy R in Docker containers, modern enterprises are now
capable of having real-time machine learning powered by R. A number of packages and projects have
enabled R to respond to client requests over TCP/IP and local socket servers, such as Rserve (Urbanek,
2019), svSocket (Grosjean, 2019), rApache and more recently plumber (https://www.rplumber.io/)
and RestRserve (http://restrserve.org), which even processes incoming requests in parallel with
forked processes using Rserve. The latter two also provide documentation for deployment with Docker
or ready-to-use images with automated builds33. These software allow other (remote) processes and
programming languages to interact with R and to expose R-based function in a service architecture
with HTTP APIs. APIs based on these packages can be deployed with scalability and high availability
using containers. This pattern of deploying code matches those used by software engineering services
created in more established languages in the enterprise domain, such as Java or Python, and R can be
used alongside those languages as a first-class member of a software engineering technical stack.

31See "Deploying a prediction service with Plumber" vignette for details: https://cran.r-
project.org/web/packages/AzureContainers/vignettes/vig01_plumber_deploy.html.

32See OpenFaaS R templates at https://github.com/analythium/openfaas-rstats-templates.
33See https://www.rplumber.io/docs/hosting.html#docker, https://hub.docker.com/r/trestletech/plumber/

and https://hub.docker.com/r/rexyai/restrserve/.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
139

CONTRIBUTED RESEARCH ARTICLE 447

CARD.com implemented a web application for the optimisation of the acquisition flow and
the real-time analysis of debit card transactions. The software used Rserve and rApache and was
deployed in Docker containers. The R session behind Rserve acted as a read-only in-memory database,
which was extremely fast and scalable, for the many concurrent rApache processes responding to
the live-scoring requests of various divisions of the company. Similarly deodorised R scripts were
responsible for the ETL processes and even the client-facing email, text message and push notification
alerts sent in real-time based on card transactions. The related Docker images were made available at
https://github.com/cardcorp/card-rocker. The images extended rocker/r-base and additionally
entailed an SSH client and a workaround for being able to mount SSH keys from the host, Pandoc,
the Amazon Web Services (AWS) SDK, and Java, which is required by the AWS SDK. The AWS SDK
allowed for running R consumers reading from real-time data processing streams of AWS Kinesis 34.
The applications were deployed on Amazon Elastic Container Service (ECS). The main takeaways from
using R in Docker were not only that pinning the R package versions via MRAN is important, but also
that moving away from Debian testing to a distribution with long-term support can be necessary. For
the use case at hand, this switch allowed for more control over upstream updates and for minimising
the risk of breaking the automated builds of the Docker images and production jobs.

The AI @ T-Mobile team created a set of machine learning models for natural language processing
to help customer care agents manage text-based messages from customers (T-Mobile et al., 2018).
For example, one model identifies whether a message is from a customer (see Shiny-based demo
further described by Nolis and Werdell, 2019), and others tell which customers are likely to make a
repeat purchase. If a data scientist creates a such a model and exposes it through a plumber API, then
someone else on the marketing team can write software that sends different emails depending on that
real-time prediction. The models are convolutional neural networks that use the keras package (Allaire
and Chollet, 2019) and run in a Rocker container. The corresponding Dockerfiles are published on
GitHub. Since the models power tools for agents and customers, they need to have extremely high
uptime and reliability. The AI @ T-Mobile team found that the models performed well, and today
these models power real-time services that are called over a million times a day.

Common or public work environments

The fact that Docker images are portable and well defined make them useful when more than one
person needs access to the same computing environment. This is even more useful when some
of the users do not have the expertise to create such an environment themselves, and when these
environments can be run in public or using shared infrastructure. For example, RCloud (https:
//rcloud.social) is a cloud-based platform for data analysis, visualisation and collaboration using R.
It provides a rocker/drd base image for easy evaluation of the platform35.

The Binder project, maintained by the team behind Jupyter, makes it possible for users to create
and share computing environments with others (Jupyter et al., 2018). A BinderHub allows anyone
with access to a web browser and an internet connection to launch a temporary instance of these
custom environments and execute any workflows contained within. From a reproducibility standpoint,
Binder makes it exceedingly easy to compile a paper, visualize data, and run small examples from
papers or tutorials without the need for any local installation. To set up Binder for a project, a
user typically starts at an instance of a BinderHub and passes the location of a repository with a
workspace, e.g., a hosted Git repository, or a data repository like Zenodo. Binder’s core internal tool
is repo2docker. It deterministically builds a Docker image by parsing the contents of a repository,
e.g., project dependency configurations or simple configuration files36. In the most powerful case,
repo2docker builds a given Dockerfile. While this approach works well for most run-of-the-mill
Python projects, it is not so seamless for R projects. This is partly because repo2docker does not
support arbitrary base images due to the complex auto-generation of the Dockerfile instructions.

Two approaches make using Binder easier for R users. First, holepunch (https://github.com/
karthik/holepunch) is an R package that was designed to make sharing work environments accessible
to novice R users based on Binder. For any R projects that use the Tidyverse suite (Wickham et al.,
2019), the time and resources required to build all dependencies from source can often time out before
completion, making it frustrating for the average R user. holepunch removes some of these limitations
by leveraging Rocker images that contain the Tidyverse along with special Jupyter dependencies,
and only installs additional packages from CRAN and Bioconductor that are not already part of
these images. It short circuits the configuration file parsing in repo2docker and starts with the
Binder/Tidyverse base images, which eliminates a large part of the build time and, in most cases,
results in a Binder instance launching within a minute. holepunch also creates a DESCRIPTION file

34See useR!2017 talk "Stream processing with R in AWS".
35https://github.com/att/rcloud/tree/master/docker
36See supported file types at https://repo2docker.readthedocs.io/en/latest/config_files.html. For R, the

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
140

CONTRIBUTED RESEARCH ARTICLE 448

for essential metadata and dependency specification, and thereby turns any project into a research
compendium (see Packaging research reproducibly). The Dockerfile included with the project can
also be used to launch an RStudio Server instance locally, i.e., independent of Binder, which is especially
useful when more or special computational resources can be provided there. The local image usage
reduces the number of separately managed environments and, thereby, reduces work and increases
portability and reproducibility.

Second, the Whole Tale project (https://wholetale.org) combines the strengths of the Rocker
Project’s curated Docker images with repo2docker. Whole Tale is a National Science Foundation (NSF)
funded project developing a scalable, open-source, multi-user platform for reproducible research
(Brinckman et al., 2019; Chard et al., 2019b). A central goal of the platform is to enable researchers to
easily create and publish executable research objects37 associated with published research (Chard et al.,
2019a). Using Whole Tale, researchers can create and publish Rocker-based reproducible research
objects to a growing number of repositories including DataONE member nodes, Zenodo and soon
Dataverse. Additionally, Whole Tale supports automatic data citation and is working on capabilities for
image preservation and provenance capture to improve the transparency of published computational
research artefacts (Mecum et al., 2018; McPhillips et al., 2019). For R users, Whole Tale extends
the Jupyter Project’s repo2docker tool to simplify the customisation of R-based environments for
researchers with limited experience with either Docker or Git. Multiple options have been discussed
to allow users to change the Ubuntu LTS (long-term support, currently Bionic Beaver) base image,
buildpack-deps:bionic, used in repo2docker. Whole Tale implemented a custom RockerBuildPack38.
The build pack combines a rocker/geospatial image with repo2docker’s composability39. This works
because both Rocker images and the repo2docker base image use distributions with APT (Wikipedia
contributors, 2020a) so that the instructions created by the latter work because of the compatible shell
and package manager.

In high-performance computing, one use for containers is to run workflows on shared local
hardware where teams manage their own high-performance servers. This can follow one of several
design patterns: Users may deploy containers to hardware as a work environment for a specific project,
containers may provide per-user persistent environments, or a single container can act as a common
multi-user environment for a server. In all cases, though, the containerised approach provides several
advantages: First, users may use the same image and thus work environment on desktop and laptop
computers. The first to patterns provide modularity, while the last approach is most similar to a
simple shared server. Second, software updates can be achieved by updating and redeploying the
container rather than by tracking local installs on each server. Third, the containerised environment
can be quickly deployed to other hardware, cloud or local, if more resources are necessary or in case of
server destruction or failure. In any of these cases, users need a method to interact with the containers,
be it an IDE exposed over an HTTP port or command-line access via tools such as SSH. A suitable
method must be added to the container recipes. The Rocker Project provides containers pre-installed
with the RStudio IDE. In cases where users store nontrivial amounts of data for their projects, the
data needs to persist beyond the life of the container. This may be in shared disks, attached network
volumes, or in separate storage where it is uploaded between sessions. In the case of shared disks or
network-attached volumes, care must be taken to match user permissions, and of course backups are
still necessary.

CyVerse is an open-source, NSF-funded cyberinfrastructure platform for the life sciences providing
easy access to computing and storage resources (Merchant et al., 2016). CyVerse has a browser-based
‘data science workbench’ called the Discovery Environment (DE). The DE uses a combination of
HTCondor and Kubernetes for orchestrating container-based analysis and integrates with external
HPC, i.e., NSF-XSEDE, through TAPIS (TACC-API’s). CyVerse hosts a multi-petabyte Data Store based
on iRODS with shared access by its users. The DE runs Docker containers on demand, with users able to
integrate bespoke containers from DockerHub or other registries (Devisetty et al., 2016). Rocker image
integration in the DE is designed to provide researchers with scalable, compute-intensive, R analysis
capabilities for large and complex datasets (e.g., genomics/multi-omics, GWAS, phenotypic data,
geospatial data, etc.). These capabilities give users flexibility similar to Binder, but allow containers
to be run on larger computational resources (RAM, CPU, Disk, GPU), and for longer periods of time
(days to weeks). The Rocker Project’s RStudio and Shiny are integrated into the DE by deriving new
images from Rocker images40. These new images include a reverse proxy using nginx to handle

37In Whole Tale a tale is a research object that contains metadata, data (by copy or reference), code, narrative,
documentation, provenance, and information about the computational environment to support computational
reproducibility.

38See https://github.com/whole-tale/repo2docker_wholetale.
39Composability refers to the ability to combine multiple package managers and their configuration files, such as

R, ‘pip‘, and ‘conda‘; see Section Common or public work environments for details.
40See https://github.com/cyverse-vice/ for Dockerfiles and configuration scripts; images are auto-built on

DockerHub at https://hub.docker.com/u/cyversevice.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
141

CONTRIBUTED RESEARCH ARTICLE 449

communication with CyVerse’s authentication system (RStudio Support, 2020); CyVerse also allows
owners to invite other registered users to securely access the same instance. The CyVerse Rocker
images further include tools for connecting to its Data Store, such as the CLI utility icommands for
iRODS. CyVerse accounts are free (with some limitations for non-US users), and the CyVerse Learning
Center provides community members with information about the platform, including training and
education opportunities.

Using GPUs (graphical processing units) as specialised hardware from containerised common
work environments is also possible and useful (Haydel et al., 2015). GPUs are increasingly popular for
compute-intensive machine learning (ML) tasks, e.g., deep artificial neural networks (Schmidhuber,
2015). Although in this case containers are not completely portable between hardware environments,
but the software stack for ML with GPUs is so complex to set up that a ready-to-use container is
helpful. Containers running GPU software require drivers and libraries specific to GPU models and
versions, and containers require a specialized runtime to connect to the underlying GPU hardware.
For NVIDIA GPUs, the NVIDIA Container Toolkit includes a specialized runtime plugin for Docker
and a set of base images with appropriate drivers and libraries. The Rocker Project has a repository
with (beta) images based on these that include GPU-enabled versions of machine-learning R packages,
e.g., rocker/ml and rocker/tensorflow-gpu.

Teaching

Two use cases demonstrate the practical usefulness and advantages of containerisation in the context
of teaching. On the one hand a special case of shared computing environments (see Section 2.4.7), and
on the other hand leveraging sandboxing and controlled environments for auto-grading.

Prepared environments for teaching are especially helpful for (a) introductory courses, where
students often struggle with the first step of installation and configuration (Çetinkaya Rundel and
Rundel, 2018), and (b) courses that require access to a relatively complex setup of software tools, e.g.,
database systems. Çetinkaya Rundel and Rundel (2018) describe how a Docker-based deployment
of RStudio (i) avoided problems with troubleshooting individual students’ computers and greatly
increased engagement through very quickly showing tangible outcomes, e.g., a visualisation, and
(ii) reduced demand on teaching and IT staff. Each student received access to a personal RStudio
instance running in a container after authentication with the university login, which gives the benefits
of sandboxing and the possibility of limiting resources. Çetinkaya Rundel and Rundel (2018) found
that for the courses at hand, actual usage of the UI is intermittent so a single cloud-based VM with
four cores and 28 GB RAM sufficed for over 100 containers. An example for mitigating complex setups
is teaching databases. R is very useful tool for interfacing with databases, because almost every
open-source and proprietary database system has an R package that allows users to connect and
interact with it. This flexibility is even broadened by DBI (R Special Interest Group on Databases
(R-SIG-DB) et al., 2019), which allows for creating a common API for interfacing these databases, or
the dbplyr package (Wickham and Ruiz, 2019), which runs dplyr (Wickham et al., 2020) code straight
against the database as queries. But learning and teaching these tools comes with the cost of deploying
or having access to an environment with the software and drivers installed. For people teaching R,
it can become a barrier if they need to install local versions of database drivers or connect to remote
instances which might or might not be made available by IT services. Giving access to a sandbox for
the most common environments for teaching databases is the idea behind r-db, a Docker image that
contains everything needed to connect to a database from R. Notably, with r-db, users do not have
to install complex drivers or configure their machine in a specific way. The rocker/tidyverse base
image ensures that users can also readily use packages for analysis, display, and reporting.

The idea of a common environment and partitioning allows for using containers in teaching
for secure execution and automated testing of submissions by students. First, Dodona is a web
platform developed at Ghent University that is used to teach students basic programming skills, and
it uses Docker containers to test submissions by students. This means that both the code testing the
students’ submissions and the submission itself are executed in a predictable environment, avoiding
compatibility issues between the wide variety of configurations used by students. The containerisation
is also used to shield the Dodona servers from bad or even malicious code: memory, time and
I/O limits are used to make sure students cannot overload the system. The web application managing
the containers communicates with them by sending configuration information as a JSON document
over standard input. Every Dodona Docker image shares a main.sh file that passes through this
information to the actual testing framework, while setting up some error handling. The testing process
in the Docker containers sends back the test results by writing a JSON document to its standard
output channel. In June 2019, R support was added to Dodona using an image derived from the
rocker/r-base image that sets up the runner user and main.sh file expected by Dodona41. It also

41https://github.com/dodona-edu/docker-images/blob/master/dodona-r.dockerfile

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
142

CONTRIBUTED RESEARCH ARTICLE 450

installs the packages required for the testing framework and the exercises so that this does not have
to happen every time a student’s submission is evaluated. The actual testing of R exercises is done
using a custom framework loosely based on testthat (Wickham, 2011). During the development of the
testing framework, it was found that the testthat framework did not provide enough information to
its reporter system to send back all the fields required by Dodona to render its feedback. Right now,
multiple statistics courses are developing exercises to automate the feedback for their lab classes.

Second, PrairieLearn is another example of a Docker-based teaching and testing platform. PrairieLearn
is being developed at the University of Illinois at Urbana-Champaign (Zilles et al., 2018) and has been
in extensive use across several faculties along with initial use on some other campuses. It uses Docker
containers as key components, both internally for its operations (programmed mainly in Python as
well as in Javascript), as well as for two reference containers providing, respectively, Python and R
auto-graders. A key design decision made by PrairieLearn permits external grading containers to be
supplied and accessed via a well-defined interface of invoking, essentially, a single script, run.sh.
This script relies on a well-defined file layout containing JSON-based configurations, support files,
exam questions, supplementary data, and student submissions. It returns per-question evaluations as
JSON result files, which PrarieLearn evaluates, aggregates and records in a database. The Data Science
Programming Methods course (Eddelbuettel, 2019) uses this via the custom rocker-pl container
(Barbehenn and Eddelbuettel, 2019).42 The rocker-pl image extends rocker/r-base with the plr R
package (Eddelbuettel and Barbehenn, 2019b) for integration into PrarieLearn testing and question
evaluation, along with the actual R packages used in instruction and testing for the course in question.
As automated grading of submitted student answers is close to the well-understood problem of
unit testing, the tinytest package (van der Loo, 2019) is used for both its core features for testing
as well as clean extensibility. The package ttdo (Eddelbuettel and Barbehenn, 2019a) utilizes the
extensibility of tinytest to display context-sensitive colourized differences between incorrect answers
and reference answers using the diffobj package (Gaslam, 2019). Additionally, ttdo addresses the
issue of insufficient information collection that Dodona faced by allowing for the collection of arbitrary,
test specific attributes for additional logging and feedback. The setup, described in more detail by
Eddelbuettel and Barbehenn (2020), is an excellent illustration of both the versatility and flexibility
offered by Docker-based approaches in teaching and testing.

Packaging research reproducibly

Containers provide a high degree of isolation that is often desirable when attempting to capture a
specific computational environment so that others can reproduce and extend a research result. Many
computationally intensive research projects depend on specific versions of original and third-party
software packages in diverse languages, joined together to form a pipeline through which data flows.
New releases of even just a single piece of software in this pipeline can break the entire workflow,
making it difficult to find the error and difficult for others to reuse existing pipelines. These breakages
can make the original the results irreproducible and, and the chance of a substantial disruption like
this is high in a multi-year research project where key pieces of third-party software may have several
major updates over the duration of the project. The classical “paper” article is insufficient to adequately
communicate the knowledge behind such research projects (cf. Donoho, 2010; Marwick, 2015).

Gentleman and Lang (2007) coined the term Research Compendium for a dynamic document
together with supporting data and code. They used the R package system (R Core Team, 1999) for
the functional prototype all the way to structuring, validating, and distributing research compendia.
This concept has been taken up and extended43, not in the least by applying containerisation and
other methods for managing computing environments—see Section Capture and create environments.
Containers give the researcher an isolated environment to assemble these research pipelines with
specific versions of software to minimize problems with breaking changes and make workflows
easier to share (cf. Boettiger, 2015; Marwick et al., 2018). Research workflows in containers are safe
from contamination from other activities that occur on the researcher’s computer, for example the
installation of the newest version of packages for teaching demonstrations or specific versions for
evaluation of others’ works. Given the users in this scenario, i.e., often academics with limited formal
software development training, templates and assistance with containers around research compendia
is essential. In many fields, we see that a typical unit of research for a container is a research report or
journal article, where the container holds the compendium, or self-contained set of data (or connections
to data elsewhere) and code files needed to fully reproduce the article (Marwick et al., 2018). The
package rrtools (https://github.com/benmarwick/rrtools) provides a template and convenience
functions to apply good practices for research compendia, including a starter Dockerfile. Images
of compendium containers can be hosted on services such as Docker Hub for convenient sharing

42The reference R container was unavailable at the time, and also relies on a heavier CentOS-based build so that
a lighter alternative was established.

43See full literature list at https://research-compendium.science/.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
143

CONTRIBUTED RESEARCH ARTICLE 451

among collaborators and others. Similarly, packages such as containerit and dockerfiler can be used
to manage the Dockerfile to be archived with a compendium on a data repository (e.g. Zenodo,
Dataverse, Figshare, OSF). A typical compendium’s Dockerfile will pull a rocker image fixed to a
specific version of R, and install R packages from the MRAN repository to ensure the package versions
are tied to a specific date, rather than the most recent version. A more extreme case is the dynverse
project (Saelens et al.), which packages over 50 computational methods with different environments
(R, Python, C++, etc.) in Docker images, which can be executed from R. dynverse uses a CI platform
(see Development, debugging, and testing) to build Rocker-derived images, test them, and, if the tests
succeed, publish them on Docker Hub.

Future researchers can download the compendium from the repository and run the included
Dockerfile to build a new image that recreates the computational environment used to produce the
original research results. If building the image fails, the human-readable instructions in a Dockerfile

are the starting point for rebuilding the environment. When combined with CI (see Development,
debugging, and testing), a research compendium set-up can enable continuous analysis with easier
verification of reproducibility and audits trails (Beaulieu-Jones and Greene, 2017).

Further safeguarding practices are currently under development or not part of common practice
yet, such as preserving images (Emsley and De Roure, 2018), storing both images and Dockerfiles
(cf. Nüst et al., 2017), or pinning system libraries beyond the tagged base images, which may be seen
as stable or dynamic depending on the applied time scale (see discussion on debian:testing base
image in Boettiger and Eddelbuettel, 2017). A recommendation of the recent National Academies’
report on Reproducibility and Replicability in Science is that journals “consider ways to ensure computational
reproducibility for publications that make claims based on computations” (Committee on Reproducibility
and Replicability in Science, 2019). In fields such as political science and economics, journals are
increasingly adopting policies that require authors to publish the code and data required to reproduce
computational findings reported in published manuscripts, subject to independent verification (Jacoby
et al., 2017; Vilhuber, 2019; Alvarez et al., 2018; Christian et al., 2018; Eubank, 2016; King, 1995).
Problems with the computational environment, installation and availability of software dependencies
are common. R is gaining popularity in these communities, such as for creating a research compendium.
In a sample of 105 replication packages published by the American Journal of Political Science (AJPS),
over 65% use R. The NSF-funded Whole Tale project, which was mentioned above, uses the Rocker
Project community images with the goal of improving the reproducibility of published research
artefacts and simplifying the publication and verification process for both authors and reviewers by
reducing errors and time spent specifying the environment.

Conclusions

This article is a snapshot of the R corner in a universe of applications built with a many-faced
piece of software, Docker. Dockerfiles and Docker images are the go-to methods for collaboration
between roles in an organisation, such as developers and IT operators, and between participants in
the communication of knowledge, such as researchers or students. Docker has become synonymous
with applying the concept of containerisation to solve challenges of reproducible environments, e.g.,
in research and in development & production, and of scalable deployments because it can easily
move processing between machines, e.g., locally, a cloud provider’s VM, another cloud provider’s
Container-as-a-Service. Reproducible environments, scalability & efficiency, and portability across
infrastructures are the common themes behind R packages, use cases, and applications in this work.

The projects presented above show the growing number of users, developers, and real-world
applications in the community and the resulting innovations. But the applications also point to the
challenges of keeping up with a continuously evolving landscape. Some use cases have considerable
overlap, which can be expected as a common language and understanding of good practices is still
taking shape. Also, the ease with which one can create complex software systems with Docker to
serve one’s specific needs, such as an independent Docker image stack, leads to parallel developments.
This ease-of-DIY in combination with the difficulty of reusing parts from or composing multiple
Dockerfiles is a further reason for fragmentation. Instructions can be outsourced into distributable
scripts and then copied into the image during build, but that makes Dockerfiles harder to read.
Scripts added to a Dockerfile also add a layer of complexity and increase the risk of incomplete
recipes. Despite the different image stacks presented here, the pervasiveness of Rocker images can
be traced back to its maintainers and the user community valuing collaboration and shared starting
points over impulses to create individual solutions. Aside from that, fragmentation may not be a
bad sign but may instead be a reflection of a growing market that is able to sustain multiple related
efforts. With the maturing of core building blocks, such as the Rocker suite of images, more working
systems will be built, but they may simply work behind the curtains. Docker alone, as a flexible
core technology, is not a feasible level of collaboration and abstraction. Instead, the use cases and

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
144

CONTRIBUTED RESEARCH ARTICLE 452

applications observed in this work provide a more useful division.

Nonetheless, at least on the level of R packages some consolidation seems in order, e.g., to reduce
the number of packages creating Dockerfiles from R code or controlling the Docker daemon with
R code. It remains to be seen which approach to control Docker, via the Docker API as stevedore
or via system calls as dockyard/docker/dockr, is more sustainable, or whether the question will
be answered by the endurance of maintainers and sufficient funding. Similarly, capturing environ-
ments and their serialisation in form of a Dockerfile currently is happening at different levels of
abstraction, and re-use of functionality seems reasonable, e.g., liftr could generate the environment
with containerit, which in turn may use dockerfiler for low-level R objects representing a Dockerfile

and its instructions. In this consolidation of R packages, the Rocker Project could play the role of
a coordinating entity. Nonetheless, for the moment, it seems that the Rocker Project will focus on
maintaining and extending its image stacks, e.g., images for GPU-based computing and artificial
intelligence. Even with coding being more and more accepted as a required and achievable skill,
an easier access, for example by exposing containerisation benefits via simple user interfaces in the
users’ IDE, could be an important next step, since currently containerisation happens more in the
background for UI-based development (e.g., a rocker/rstudio image in the cloud). Furthermore, the
maturing of the Rockerverse packages for managing containers may lead to them being adopted in
situations where manual coding is currently required, e.g. in the case of RSelenium or drake (see
Sections Development, debugging, and testing and Processing respectively). In some cases, e.g.,
for analogsea, the interaction with the Docker daemon may remain too specific to re-use first-order
packages to control Docker.

New features which make complex workflows accessible and reproducible and the variety in
packages connected with containerisation, even when they have overlapping features, are a signal and
support for a growing user base. This growth is possibly the most important goal for the foreseeable
future in the Rockerverse, and, just like the Rocker images have matured over years of use and millions
of runs, the new ideas and prototypes will have to prove themselves. It should be noted that the
dominant position is that Docker is a blessing and a curse for these goals. It might be wise to
start experimenting with non-Docker containerisation tools now, e.g., R packages interfacing with
other container engines, such as podman/buildah, or an R package for creating Singularity files.
Such efforts might help to avoid lock-in and to design sustainable workflows based on concepts of
containerisation, not on their implementation in Docker. If adoption of containerisation and R continue
to grow, the missing pieces for a success predominantly lie in (a) coordination and documentation of
activities to reduce repeated work in favour of open collaboration, (b) the sharing of lessons learned
from use cases to build common knowledge and language, and (c) a sustainable continuation and
funding for development, community support, and education. A first concrete effort to work towards
these missing pieces should be sustaining the structure and captured status quo from this work in the
form of a CRAN Task View on containerisation.

Author contributions

The ordering of authors following DN and DE is alphabetical. DN conceived the article idea, initialised
the formation of the writing team, wrote sections not mentioned below, and revised all sections. DE
wrote the introduction and the section about containerisation and the Rocker Project, and reviewed all
sections. DB wrote the section on outsider. GD contributed the CARD.com use case. RC contributed to
the section on interfaces for Docker in R (dynverse and dynwrap). DC contributed content on Gigantum.
ME contributed to the section on processing and deployment to cloud services. CF wrote paragraphs
about r-online, dockerfiler, r-ci and r-db. EH contributed content on dockyard. LK contributed
content on dockr. SL contributed content on RStudio’s usage of Docker. BM wrote the section on
research compendia and made the project Binder-ready. HN & JN co-wrote the section on the T-
Mobile use case. KR wrote the section about holepunch. NR wrote paragraphs about shared work
environments and GPUs. LS & NT wrote the section on Bioconductor. PS wrote the paragraphs about
CI/CD pipelines with Shinyproxy 1-Click app and OpenFaaS templates. TS & JW wrote the section on
CyVerse. CvP wrote the section on the usage of Docker containers in Dodona. CW wrote the sections
on Whole Tale and contributed content about publication reproducibility audits. NX contributed
content on liftr. All authors approved the final version. This articles was collaboratively written at
https://github.com/nuest/rockerverse-paper/. The contributors page and discussion issues provide
details on the respective contributions.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
145

CONTRIBUTED RESEARCH ARTICLE 453

Acknowledgements

DN is supported by the project Opening Reproducible Research (o2r) funded by the German Research
Foundation (DFG) under project number PE 1632/17-1. The funders had no role in data collection and
analysis, decision to publish, or preparation of the manuscript. KR was supported in part by a grant
from The Leona M. and Harry B. Helmsley Charitable Trust, award number 2016PG-BRI004. LS and
NT are supported by US NIH / NHGRI awards U41HG00405 and U24HG010263. CW is supported
by the Whole Tale project (https://wholetale.org) funded by the US National Science Foundation
(NSF) under award OAC-1541450. NR is supported in part by the Chan-Zuckerberg Initiative Essential
Open Source Software for Science program. We would like to thank Celeste R. Brennecka from the
Scientific Editing Service of the University of Münster for her editorial support.

Bibliography

M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen. Orchestration of Microservices for
IoT Using Docker and Edge Computing. IEEE Communications Magazine, 56(9):118–123, Sept. 2018.
ISSN 0163-6804, 1558-1896. doi: 10.1109/MCOM.2018.1701233. [p438]

J. Allaire and F. Chollet. keras: R Interface to ’Keras’, 2019. URL https://CRAN.R-project.org/package=

keras. R package version 2.2.5.0. [p447]

R. M. Alvarez, E. M. Key, and L. Núñez. Research replication: Practical considerations. PS: Political Sci-
ence & Politics, 51(2):422–426, Apr 2018. ISSN 1049-0965, 1537-5935. doi: 10.1017/S1049096517002566.
[p451]

L. A. Barba. Terminologies for Reproducible Research. arXiv:1802.03311 [cs], Feb. 2018. URL http:

//arxiv.org/abs/1802.03311. arXiv: 1802.03311. [p437]

A. Barbehenn and D. Eddelbuettel. rocker-pl: Docker image for grading R in PrairieLearn, 2019. URL
https://github.com/stat430dspm/rocker-pl. Docker container to support STAT 430 ’Data Science
Programming Methods’, Department of Statistics, University of Illinois at Urbana-Champaign.
[p450]

B. K. Beaulieu-Jones and C. S. Greene. Reproducibility of computational workflows is automated using
continuous analysis. Nature Biotechnology, advance online publication, Mar. 2017. ISSN 1087-0156.
doi: 10.1038/nbt.3780. [p451]

H. Bengtsson. future: Unified Parallel and Distributed Processing in R for Everyone, 2020a. URL https:

//CRAN.R-project.org/package=future. R package version 1.16.0. [p444]

H. Bengtsson. future: Unified Parallel and Distributed Processing in R for Everyone, 2020b. URL https:

//CRAN.R-project.org/package=future. R package version 1.16.0. [p444]

D. Bennett, H. Hettling, D. Silvestro, R. Vos, and A. Antonelli. outsider: Install and run programs,
outside of r, inside of r (under review). Journal of Open Source Software, 5(45):2038, 2020. doi:
10.21105/joss.02038. [p445]

D. Bernstein. Containers and cloud: From LXC to docker to kubernetes. IEEE Cloud Computing, 1(3):
81–84, Sept. 2014. doi: 10.1109/mcc.2014.51. [p438]

R. Bivand, T. Keitt, and B. Rowlingson. rgdal: Bindings for the ’Geospatial’ Data Abstraction Library, 2019.
URL https://CRAN.R-project.org/package=rgdal. R package version 1.4-8. [p443]

C. Boettiger. An introduction to Docker for reproducible research, with examples from the R en-
vironment. ACM SIGOPS Operating Systems Review, 49(1):71–79, Jan. 2015. ISSN 01635980. doi:
10.1145/2723872.2723882. [p438, 450]

C. Boettiger and D. Eddelbuettel. An Introduction to Rocker: Docker Containers for R. The R Journal, 9
(2):527–536, 2017. doi: 10.32614/RJ-2017-065. [p438, 442, 451]

C. Boettiger, R. Lovelace, M. Howe, and J. Lamb. rocker-org/geospatial, Dec. 2019. [p438]

A. Brinckman, K. Chard, N. Gaffney, M. Hategan, M. B. Jones, K. Kowalik, S. Kulasekaran, B. Ludäscher,
B. D. Mecum, J. Nabrzyski, et al. Computing environments for reproducibility: Capturing the
“Whole Tale”. Future Generation Computer Systems, 94:854–867, 2019. doi: 10.1016/j.future.2017.12.
029. [p448]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
146

CONTRIBUTED RESEARCH ARTICLE 454

R. Cannoodt and W. Saelens. babelwhale: Talking to ’Docker’ and ’Singularity’ Containers, 2019. URL
https://CRAN.R-project.org/package=babelwhale. R package version 1.0.1. [p439]

L. Cardozo. Faster Docker builds in Travis CI for R packages, 2018. URL https://lecardozo.github.

io/2018/03/01/automated-docker-build.html. [p443]

S. Chamberlain, H. Wickham, and W. Chang. analogsea: Interface to ’Digital Ocean’, 2019. URL
https://CRAN.R-project.org/package=analogsea. R package version 0.7.2. [p446]

Chan Zuckerberg Initiative, C. Boettiger, N. Ross, and D. Eddelbuettel. Maintain-
ing Rocker: Sustainability for Containerized Reproducible Analyses, 2019. URL
https://chanzuckerberg.com/eoss/proposals/maintaining-rocker-sustainability-for-

containerized-reproducible-analyses/. [p438]

W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson. shiny: Web Application Framework for R, 2019.
URL https://CRAN.R-project.org/package=shiny. R package version 1.4.0. [p441, 445]

K. Chard, N. Gaffney, M. B. Jones, K. Kowalik, B. Ludäscher, T. McPhillips, J. Nabrzyski, V. Stodden,
I. Taylor, T. Thelen, M. J. Turk, and C. Willis. Application of BagIt-Serialized Research Object Bundles
for Packaging and Re-execution of Computational Analyses. 2019a. doi: 10.5281/zenodo.3381754.
To appear in 2019 IEEE 15th International Conference on e-Science (e-Science). [p448]

K. Chard, N. Gaffney, M. B. Jones, K. Kowalik, B. Ludäscher, J. Nabrzyski, V. Stodden, I. Taylor, M. J.
Turk, and C. Willis. Implementing computational reproducibility in the whole tale environment. In
Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems,
P-RECS ’19, pages 17–22, 2019b. doi: 10.1145/3322790.3330594. [p448]

T.-M. Christian, W. G. Jacoby, S. Lafferty-Hess, and T. Carsey. Operationalizing the replication standard.
International Journal of Digital Curation, 13(1), 2018. doi: 10.2218/ijdc.v13i1.555. [p451]

Committee on Reproducibility and Replicability in Science. Reproducibility and Replicability in Science.
National Academies Press, 2019. ISBN 978-0-309-48616-3. doi: 10.17226/25303. [p451]

Datadog. 8 surprising facts about real Docker adoption, June 2018. URL https://www.datadoghq.

com/docker-adoption/. [p437, 438]

U. K. Devisetty, K. Kennedy, P. Sarando, N. Merchant, and E. Lyons. Bringing your tools to CyVerse
Discovery Environment using Docker. F1000Research, 5:1442, Dec. 2016. ISSN 2046-1402. doi:
10.12688/f1000research.8935.3. [p448]

D. Donoho. 50 Years of Data Science. Journal of Computational and Graphical Statistics, 26(4):745–766,
Oct. 2017. ISSN 1061-8600. doi: 10.1080/10618600.2017.1384734. [p440]

D. L. Donoho. An invitation to reproducible computational research. Biostatistics, 11(3):385–388, July
2010. ISSN 1465-4644. doi: 10.1093/biostatistics/kxq028. [p450]

A. Eckert. Building and testing R packages with latest R-Devel, Feb. 2018. URL https://

alexandereckert.com/post/testing-r-packages-with-latest-r-devel/. [p443]

D. Eddelbuettel. sanitizers: C/C++ source code to trigger Address and Undefined Behaviour Sanitizers, 2014.
URL https://CRAN.R-project.org/package=sanitizers. R package version 0.1.0. [p443]

D. Eddelbuettel. STAT430: Data Science Programming Methods, 2019. URL https://stat430.com. Fourth
and fifth year topics course, Department of Statistics, University of Illinois at Urbana-Champaign.
[p450]

D. Eddelbuettel and A. Barbehenn. ttdo: Extend ’tinytest’ with ’diffobj’, 2019a. URL https://CRAN.R-

project.org/package=ttdo. R package version 0.0.4. [p450]

D. Eddelbuettel and A. Barbehenn. plr: Utility Functions for ’PrairieLearn’ and R, 2019b. URL
https://github.com/stat430dspm/plr. R package supporting Docker for STAT 430 ’Data Sci-
ence Programming Methods’, Department of Statistics, University of Illinois at Urbana-Champaign.
[p450]

D. Eddelbuettel and A. Barbehenn. An R Autograder for PrairieLearn, 2020. URL http://arxiv.org/

abs/2003.06500. [p450]

D. Eddelbuettel and R. Koenker. Debugging with Docker and Rocker – A Concrete Example helping
on macOS, Aug. 2019. URL http://dirk.eddelbuettel.com/blog/2019/08/05/. [p443]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
147

CONTRIBUTED RESEARCH ARTICLE 455

M. Edmondson. R on Kubernetes - serverless Shiny, R APIs and scheduled scripts, May
2018. URL https://code.markedmondson.me/r-on-kubernetes-serverless-shiny-r-apis-and-

scheduled-scripts/. [p446]

M. Edmondson. googleComputeEngineR: R Interface with Google Compute Engine, 2019. URL https:

//CRAN.R-project.org/package=googleComputeEngineR. R package version 0.3.0. [p444, 445]

M. Edmondson. googleCloudRunner: R Scripts in the Google Cloud via Cloud Run, Cloud Build and
Cloud Scheduler, 2020. URL https://CRAN.R-project.org/package=googleCloudRunner. R package
version 0.1.1. [p439]

I. Emsley and D. De Roure. A Framework for the Preservation of a Docker Container | International
Journal of Digital Curation. International Journal of Digital Curation, 12(2), Apr. 2018. doi: 10.2218/
ijdc.v12i2.509. [p451]

N. Eubank. Lessons from a decade of replications at the Quarterly Journal of Political Science. PS:
Political Science & Politics, 49(2):273–276, Apr 2016. ISSN 1049-0965, 1537-5935. doi: 10.1017/
S1049096516000196. [p451]

C. Fay. dockerfiler: Easy Dockerfile Creation from R, 2019. URL https://CRAN.R-project.org/package=

dockerfiler. R package version 0.1.3. [p442]

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison of virtual
machines and Linux containers. In 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 171–172, Mar. 2015. doi: 10.1109/ISPASS.2015.7095802. [p438]

R. FitzJohn. stevedore: Docker Client, 2020. URL https://CRAN.R-project.org/package=stevedore. R
package version 0.9.3. [p439]

B. Gaslam. diffobj: Diffs for R Objects, 2019. URL https://CRAN.R-project.org/package=diffobj. R
package version 0.2.3. [p450]

GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. Open Source
Geospatial Foundation, 2019. URL https://gdal.org. [p443]

R. Gentleman and D. T. Lang. Statistical Analyses and Reproducible Research. Journal of Computational
and Graphical Statistics, 16(1):1–23, Mar. 2007. ISSN 1061-8600. doi: 10.1198/106186007X178663.
[p450]

R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge,
J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J.
Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Y. Yang, and J. Zhang. Bioconductor: open
software development for computational biology and bioinformatics. Genome Biology, 5(10):R80,
Sept. 2004. ISSN 1474-760X. doi: 10.1186/gb-2004-5-10-r80. [p440]

J.-P. S. Glouzon, J.-P. Perreault, and S. Wang. Structurexplor: a platform for the exploration of structural
features of RNA secondary structures. Bioinformatics, 33(19):3117–3120, Oct. 2017. ISSN 1367-4803.
doi: 10.1093/bioinformatics/btx323. [p445]

P. Grosjean. SciViews-R: A GUI API for R. UMONS, MONS, Belgium, 2019. URL http://www.sciviews.

org/SciViews-R. [p446]

V. Guyader, C. Fay, S. Rochette, and C. Girard. golem: A Framework for Robust Shiny Applications, 2019.
URL https://CRAN.R-project.org/package=golem. R package version 0.1. [p445]

J. Harrison. RSelenium: R Bindings for ’Selenium WebDriver’, 2019. URL https://CRAN.R-project.org/

package=RSelenium. R package version 1.7.5. [p443]

N. Haydel, G. Madey, S. Gesing, A. Dakkak, S. G. de Gonzalo, I. Taylor, and W.-m. W. Hwu. Enhancing
the Usability and Utilization of Accelerated Architectures via Docker. In Proceedings of the 8th
International Conference on Utility and Cloud Computing, UCC ’15, pages 361–367. IEEE Press, 2015.
ISBN 978-0-7695-5697-0. URL http://dl.acm.org/citation.cfm?id=3233397.3233456. [p449]

K. Hornik, U. Ligges, and A. Zeileis. Changes on cran. The R Journal, 11(1):438–441, June 2019. URL
http://journal.r-project.org/archive/2019-1/cran.pdf. [p437]

W. G. Jacoby, S. Lafferty-Hess, and T.-M. Christian. Should journals be responsible for reproducibility?
Inside Higher Ed, Jul 2017. URL https://www.insidehighered.com/blogs/rethinking-research/

should-journals-be-responsible-reproducibility. [p451]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
148

CONTRIBUTED RESEARCH ARTICLE 456

P. Jupyter. Jupyter Docker Stacks — docker-stacks latest documentation, 2018. URL https://jupyter-

docker-stacks.readthedocs.io/en/latest/. [p440]

P. Jupyter, M. Bussonnier, J. Forde, J. Freeman, B. Granger, T. Head, C. Holdgraf, K. Kelley, G. Nalvarte,
A. Osheroff, M. Pacer, Y. Panda, F. Perez, B. Ragan-Kelley, and C. Willing. Binder 2.0 - Reproducible,
interactive, sharable environments for science at scale. Proceedings of the 17th Python in Science
Conference, pages 113–120, 2018. doi: 10.25080/Majora-4af1f417-011. [p447]

G. King. Replication, replication. PS: Political Science & Politics, 28(3):444–452, Sep 1995. doi: 10.2307/
420301. [p451]

L. Kjeldgaard. dockr: Creation of Lightweight Docker Images for Your Packages, 2019a. URL https:

//CRAN.R-project.org/package=dockr. R package version 0.8.6. [p442]

L. Kjeldgaard. ’dockr’: easy containerization for R - pRopaganda by smaakagen, Dec. 2019b. URL
http://smaakage85.netlify.com/2019/12/21/dockr-easy-containerization-for-r/. [p442]

G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity: Scientific containers for mobility of compute.
PLOS ONE, 12(5):e0177459, May 2017. ISSN 1932-6203. doi: 10.1371/journal.pone.0177459. [p437,
438]

W. M. Landau. The drake r package: a pipeline toolkit for reproducibility and high-performance
computing. Journal of Open Source Software, 3(21), 2018. [p444]

M. Lang, B. Bischl, and D. Surmann. batchtools: Tools for r to work on batch systems. The Journal of
Open Source Software, 2(10):135, 2 2017. ISSN 2475-9066. doi: 10.21105/joss.00135. [p444]

B. Marwick. How computers broke science – and what we can do to fix it, Nov.
2015. URL http://theconversation.com/how-computers-broke-science-and-what-we-can-do-

to-fix-it-49938. [p450]

B. Marwick. Research compendium for the 1989 excavations at Madjedbebe rockshelter, NT, Australia,
July 2017. [p442]

B. Marwick, C. Boettiger, and L. Mullen. Packaging Data Analytical Work Reproducibly Using R (and
Friends). The American Statistician, 72(1):80–88, Jan. 2018. ISSN 0003-1305. doi: 10.1080/00031305.
2017.1375986. [p450]

T. McPhillips, C. Willis, M. Gryk, S. Nunez-Corrales, and B. Ludäscher. Reproducibility by Other
Means: Transparent Research Objects. 2019. doi: 10.5281/zenodo.3382423. To appear in 2019 IEEE
15th International Conference on e-Science (e-Science). [p448]

B. Mecum, M. B. Jones, D. Vieglais, and C. Willis. Preserving reproducibility: Provenance and
executable containers in dataone data packages. In 2018 IEEE 14th International Conference on
e-Science (e-Science), pages 45–49. IEEE, 2018. doi: 10.1109/eScience.2018.00019. [p448]

N. Merchant, E. Lyons, S. Goff, M. Vaughn, D. Ware, D. Micklos, and P. Antin. The iPlant Collaborative:
Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences. PLOS Biology, 14(1):
e1002342, Jan. 2016. ISSN 1545-7885. doi: 10.1371/journal.pbio.1002342. [p448]

Microsoft. CRAN Time Machine - MRAN, 2019a. URL https://mran.microsoft.com/timemachine.
[p438]

Microsoft. Linux Containers on Windows, Sept. 2019b. URL https://docs.microsoft.com/en-

us/virtualization/windowscontainers/deploy-containers/linux-containers. [p438]

M. Morgan. BiocManager: Access the Bioconductor Project Package Repository, 2019. URL https://CRAN.R-

project.org/package=BiocManager. R package version 1.30.10. [p440]

S. Muñoz. The history of Docker’s climb in the container management market, June
2019. URL https://searchservervirtualization.techtarget.com/feature/The-history-of-

Dockers-climb-in-the-container-management-market. [p437]

J. Nolis and J. Werdell. Small data, big value, Dec. 2019. URL https://medium.com/tmobile-tech/

small-data-big-value-f783ceca4fdb. [p447]

D. Nüst and M. Hinz. containerit: Generating Dockerfiles for reproducible research with R. Journal
of Open Source Software, 4(40):1603, Aug. 2019. ISSN 2475-9066. doi: 10.21105/joss.01603. URL
https://joss.theoj.org/papers/10.21105/joss.01603. [p442]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
149

CONTRIBUTED RESEARCH ARTICLE 457

D. Nüst, M. Konkol, E. Pebesma, C. Kray, M. Schutzeichel, H. Przibytzin, and J. Lorenz. Opening the
Publication Process with Executable Research Compendia. D-Lib Magazine, 23(1/2), Jan. 2017. ISSN
1082-9873. doi: 10.1045/january2017-nuest. [p451]

OCI. Open Containers Initiative - About, 2019. URL https://www.opencontainers.org/about. [p438]

H. Ooi. AzureContainers: Interface to ’Container Instances’, ’Docker Registry’ and ’Kubernetes’ in ’Azure’,
2019. URL https://CRAN.R-project.org/package=AzureContainers. R package version 1.2.0.
[p439]

H. Ooi, A. de Vries, and Microsoft. checkpoint: Install Packages from Snapshots on the Checkpoint Server for
Reproducibility, 2020. URL https://CRAN.R-project.org/package=checkpoint. R package version
0.4.9. [p442]

J. Ooms. OpenCPU - Why Use Docker with R? A DevOps Perspective, Oct. 2017. URL https:

//www.opencpu.org/posts/opencpu-with-docker/. [p443, 445]

J. Ooms. sys: Powerful and Reliable Tools for Running System Commands in R, 2019. URL https://CRAN.R-

project.org/package=sys. R package version 3.3. [p439]

E. Pebesma. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1):
439–446, 2018. doi: 10.32614/RJ-2018-009. [p443]

R Core Team. 1999. URL https://cran.r-project.org/doc/manuals/r-devel/R-exts.html. [p443,
450]

R-hub project. R-hub Docs, 2019. URL https://docs.r-hub.io/. [p443]

R Special Interest Group on Databases (R-SIG-DB), H. Wickham, and K. Müller. DBI: R Database
Interface, 2019. URL https://CRAN.R-project.org/package=DBI. R package version 1.1.0. [p449]

RStudio Support. Running rstudio server with a proxy, Jan. 2020. URL https://support.rstudio.

com/hc/en-us/articles/200552326-Running-RStudio-Server-with-a-Proxy. [p449]

W. Saelens, R. Cannoodt, H. Todorov, and Y. Saeys. A comparison of single-cell trajectory inference
methods. 37. ISSN 15461696. doi: 10.1038/s41587-019-0071-9. [p451]

L. Savini, L. Candeloro, S. Perticara, and A. Conte. EpiExploreR: A Shiny Web Application for
the Analysis of Animal Disease Data. Microorganisms, 7(12):680, Dec. 2019. doi: 10.3390/
microorganisms7120680. [p445]

J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, Jan. 2015.
ISSN 0893-6080. doi: 10.1016/j.neunet.2014.09.003. [p449]

T-Mobile, J. Nolis, and H. Nolis. Enterprise Web Services with Neural Networks Using R and Ten-
sorFlow, Nov. 2018. URL https://opensource.t-mobile.com/blog/posts/r-tensorflow-api/.
[p447]

Trestle Technology, LLC. plumber: An API Generator for R, 2018. URL https://CRAN.R-project.org/

package=plumber. R package version 0.4.6. [p444]

S. Urbanek. Rserve: Binary R server, 2019. URL https://CRAN.R-project.org/package=Rserve. R
package version 1.7-3.1. [p446]

K. Ushey. Using renv with Docker, 2019. URL https://rstudio.github.io/renv/articles/docker.

html. [p442]

K. Ushey. renv: Project Environments, 2020. URL https://CRAN.R-project.org/package=renv. R
package version 0.9.3. [p442]

K. Ushey, J. Allaire, and Y. Tang. reticulate: Interface to ’Python’, 2019. URL https://CRAN.R-project.

org/package=reticulate. R package version 1.14. [p441]

M. van der Loo. tinytest: Lightweight and Feature Complete Unit Testing Framework, 2019. URL https:

//CRAN.R-project.org/package=tinytest. R package version 1.1.0. [p450]

L. Vilhuber. Report by the AEA Data Editor. AEA Papers and Proceedings, 109:718–729, May 2019. ISSN
2574-0768. doi: 10.1257/pandp.109.718. [p451]

H. Wickham. testthat: Get started with testing. The R Journal, 3:5–10, 2011. URL https://journal.r-

project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf. [p450]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
150

CONTRIBUTED RESEARCH ARTICLE 458

H. Wickham and E. Ruiz. dbplyr: A ’dplyr’ Back End for Databases, 2019. URL https://CRAN.R-

project.org/package=dbplyr. R package version 1.4.2. [p449]

H. Wickham, M. Averick, J. Bryan, W. Chang, L. McGowan, R. François, G. Grolemund, A. Hayes,
L. Henry, J. Hester, M. Kuhn, T. Pedersen, E. Miller, S. Bache, K. Müller, J. Ooms, D. Robinson,
D. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome to the
Tidyverse. Journal of Open Source Software, 4(43):1686, Nov. 2019. ISSN 2475-9066. doi: 10.21105/joss.
01686. [p440, 447]

H. Wickham, R. François, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2020. URL
https://CRAN.R-project.org/package=dplyr. R package version 0.8.4. [p449]

Wikipedia contributors. APT (software), Feb. 2020a. URL https://en.wikipedia.org/w/index.php?

title=APT_(software)&oldid=939802209. Page Version ID: 939802209. [p441, 448]

Wikipedia contributors. OS-level virtualization, Jan. 2020b. URL https://en.wikipedia.org/w/index.

php?title=OS-level_virtualization&oldid=935110975. Page Version ID: 935110975. [p438]

N. Xiao. liftr: Containerize R Markdown Documents for Continuous Reproducibility, 2019. URL https:

//CRAN.R-project.org/package=liftr. R package version 0.9.2. [p442]

Y. Xie, J. J. Allaire, and G. Grolemund. R Markdown: The Definitive Guide. Chapman and Hall/CRC,
2018. [p442]

H. Ye. Docker Setup for R package Development, 2019. URL https://haoye.us/post/2019-10-10-

docker-for-r-package-development/. [p443]

C. Zilles, M. West, D. Mussulman, and T. Bretl. Making testing less trying: Lessons learned from
operating a computer-based testing facility. In Proceedings of the 2018 Frontiers in Education Conference
(FIE 2018), 2018. URL http://lagrange.mechse.illinois.edu/pubs/ZiWeMuBr2018/ZiWeMuBr2018.

pdf. [p450]

M. Çetinkaya Rundel and C. Rundel. Infrastructure and Tools for Teaching Computing Throughout
the Statistical Curriculum. The American Statistician, 72(1):58–65, Jan. 2018. ISSN 0003-1305. doi:
10.1080/00031305.2017.1397549. [p449]

Daniel Nüst
University of Münster
Institute for Geoinformatics
Heisenbergstr. 2
48149 Münster, Germany

0000-0002-0024-5046
daniel.nuest@uni-muenster.de

Dirk Eddelbuettel
University of Illinois at Urbana-Champaign
Department of Statistics
Illini Hall, 725 S Wright St
Champaign, IL 61820, USA

0000-0001-6419-907X
dirk@eddelbuettel.com

Dom Bennett
Gothenburg Global Biodiversity Centre, Sweden
Carl Skottsbergs gata 22B
413 19 Göteborg, Sweden

0000-0003-2722-1359
dominic.john.bennett@gmail.com

Robrecht Cannoodt
Ghent University
Data Mining and Modelling for Biomedicine group
VIB Center for Inflammation Research
Technologiepark 71
9052 Ghent, Belgium

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
151

CONTRIBUTED RESEARCH ARTICLE 459

0000-0003-3641-729X
robrecht@cannoodt.dev

Dav Clark
Gigantum, Inc.
1140 3rd Street NE
Washington, D.C. 20002, USA

0000-0002-3982-4416
dav@gigantum.com

Gergely Daróczi

0000-0003-3149-8537
daroczig@rapporter.net

Mark Edmondson
IIH Nordic A/S, Google Developer Expert for Google Cloud Platform
Artillerivej 86
2300 København S, Denmark

0000-0002-8434-3881
mark@markedmondson.me

Colin Fay
ThinkR
5O rue Arthur Rimbaud
93300 Aubervilliers, France

0000-0001-7343-1846
contact@colinfay.me

Ellis Hughes
Fred Hutchinson Cancer Research Center
Vaccine and Infectious Disease
1100 Fairview Ave. N., P.O. Box 19024
Seattle, WA 98109-1024, USA
ehhughes@fredhutch.org

Lars Kjeldgaard
Danish Tax Authorities
Oestbanegade 123
2100, Koebenhavn Oe
lars_kjeldgaard@hotmail.com

Sean Lopp
RStudio, Inc
250 Northern Ave
Boston, MA 02210, USA
sean@rstudio.com

Ben Marwick
University of Washington
Department of Anthropology
Denny Hall 230, Spokane Ln
Seattle, WA 98105, USA

0000-0001-7879-4531
bmarwick@uw.edu

Heather Nolis
T-Mobile
12920 Se 38th St.
Bellevue, WA, 98006, USA
heather.wensler1@t-mobile.com

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
152

CONTRIBUTED RESEARCH ARTICLE 460

Jacqueline Nolis
Nolis, LLC
Seattle, WA, USA

0000-0001-9354-6501
jacqueline@nolisllc.com

Hong Ooi
Microsoft
Level 5, 4 Freshwater Place
Southbank, VIC 3006, Australia
hongooi@microsoft.com

Karthik Ram
Berkeley Institute for Data Science
University of California
Berkeley, CA 94720, USA

0000-0002-0233-1757
karthik.ram@berkeley.edu

Noam Ross
EcoHealth Alliance
460 W 34th St., Ste. 1701
New York, NY 10001, USA

0000-0002-2136-0000
ross@ecohealthalliance.org

Lori Shepherd
Roswell Park Comprehensive Cancer Center
Elm & Carlton Streets
Buffalo, NY, 14263, USA

0000-0002-5910-4010
lori.shepherd@roswellpark.org

Péter Sólymos
Analythium Solutions
#258 150 Chippewa Road
Sherwood Park, AB, T8A 6A2, Canada

0000-0001-7337-1740
peter@analythium.io

Tyson Lee Swetnam
University of Arizona
1657 E Helen St.
Tucson, AZ, 85721, USA

0000-0002-6639-7181
tswetnam@arizona.edu

Nitesh Turaga
Roswell Park Comprehensive Cancer Center
Elm & Carlton Streets
Buffalo, NY, 14263, USA

0000-0002-0224-9817
nitesh.turaga@roswellpark.org

Charlotte Van Petegem
Ghent University
Department WE02
Krijgslaan 281, S9
9000 Gent, Belgium

0000-0003-0779-4897
charlotte.vanpetegem@ugent.be

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
153

CONTRIBUTED RESEARCH ARTICLE 461

Jason Williams
Cold Spring Harbor Laboratory
1 Bungtown Rd.
Cold Spring Harbor, NY, 11724, USA

0000-0003-3049-2010
williams@cshl.edu

Craig Willis
University of Illinois at Urbana-Champaign
501 E. Daniel St.
Champaign, IL 61820, USA

0000-0002-6148-7196
willis8@illinois.edu

Nan Xiao
Seven Bridges Genomics
529 Main St, Suite 6610
Charlestown, MA 02129, USA

0000-0002-0250-5673
me@nanx.me

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859
154

10 Practical reproducibility in geograpHy
and geosciences

Authors & contribution Daniel Nüst (90%), Edzer Pebesma

Venue Annals of the American Association of Geographers (SNIP 2020: 1.93)

10.1080/24694452.2020.1806028

Date 10/2020

License Publisher copyright; AAM PDF.

155

https://www.journalindicators.com/indicators/journal/21100463801
https://doi.org/10.1080/24694452.2020.1806028
http://nuest.staff.ifgi.de/N%C3%BCst-and-Pebesma_2020_AAM_Practical-Reproducibility-in-Geography-and-Geosciences.pdf

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=raag21

Annals of the American Association of Geographers

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/raag21

Practical Reproducibility in Geography and
Geosciences

Daniel Nüst & Edzer Pebesma

To cite this article: Daniel Nüst & Edzer Pebesma (2020): Practical Reproducibility in

Geography and Geosciences, Annals of the American Association of Geographers, DOI:

10.1080/24694452.2020.1806028

To link to this article: https://doi.org/10.1080/24694452.2020.1806028

Published online: 13 Oct 2020.

Submit your article to this journal

View related articles

View Crossmark data

Citing articles: 4 View citing articles

156

Practical Reproducibility in Geography and
Geosciences

Daniel N€ust and Edzer Pebesma

Institute for Geoinformatics, University of M€unster

Reproducible research is often perceived as a technological challenge, but it is rooted in the challenge to
improve scholarly communication in an age of digitization. When computers become involved and
researchers want to allow other scientists to inspect, understand, evaluate, and build on their work, they
need to create a research compendium that includes the code, data, computing environment, and script-
based workflows used. Here, we present the state of the art for approaches to reach this degree of
computational reproducibility, addressing literate programming and containerization while paying attention
to working with geospatial data (digital maps, geographic information systems). We argue that all researchers
working with computers should understand these technologies to control their computing environment, and
we present the benefits of reproducible workflows in practice. Example research compendia illustrate the
presented concepts and are the basis for challenges specific to geography and geosciences. Based on existing
surveys and best practices from different scientific domains, we conclude that researchers today can
overcome many barriers and achieve a very high degree of reproducibility. If the geography and geosciences
communities adopt reproducibility and the underlying technologies in practice and in policies, they can
transform the way researchers conduct and communicate their work toward increased transparency,
understandability, openness, trust, productivity, and innovation. Key Words: computational reproducibility,
reproducible research, scholarly communication.

R
eproducible research is often perceived as pri-
marily a technological challenge, but it is
really rooted in the challenge to adjust schol-

arly communication to today’s level of digitization
and diversity of scientific outputs. Common aca-
demic challenges, such as broken metrics and pres-
sure to publish articles over other products (see, e.g.,
Piwowar 2013; Nosek et al. 2015), have a negative
impact on reproducibility. The state of reproducibility
in geosciences and GIScience was investigated by
Konkol, Kray, and Pfeiffer (2019) and N€ust,
Boettiger, and Marwick (2018), respectively, and both
studies show that it needs to improve. Other fields
support this result; for example, Brunsdon (2016) on
quantitative geography, Wainwright (2020) on an
informal search in critical geography, Sui and Kedron
(2020) on the conceptual challenges of reproducibility
and replication in geography, and Sui and Shaw
(2018) on the lack of knowledge about the state of
reproducibility in human dynamics.

In this article, we present the current state of the
art for practical reproducibility of research and con-
nect it to geography and geosciences. The challenges
around reproducible research manifest in the general

lack of knowledge on how to work reproducibly and
the small fraction of published reproducible articles.
Interestingly, this is the case even though the indi-
vidual and overall benefits of reproducibility
(Vandewalle, Kovacevic, and Vetterli 2009; Donoho
2010; Markowetz 2015; Marwick 2015; Kray et al.
2019) and the innovative potential of working
reproducibly, which include, for example, “unhelpful
… non-reproducibility” (Sui and Kedron 2020),
better collaboration (Singleton, Spielman, and
Brunsdon 2016), and new pathways (Waters 2020),
are increasingly known and common concerns are
debunked (Barnes 2010). Editorial requirements and
author guidelines are an effective means to encour-
age reproducibility, but they are not widespread
enough or are still too lax (cf. Nosek et al. 2015;
Singleton, Spielman, and Brunsdon 2016; Stodden,
Seiler, and Ma 2018), so further incentives are
needed for a change of habits and culture (Munaf�o
et al. 2017; N€ust, Boettiger, and Marwick 2018).
Because many solutions for practical reproducibility
are not discipline specific, we include literature from
other domains to corroborate the small body of work
in “geo” fields, but we stick to examples and

Annals of the American Association of Geographers, 0(0) 2020, pp. 1–11 # 2020 by American Association of Geographers
Initial submission, November 2019; revised submission, March 2020; final acceptance, April 2020

Published by Taylor & Francis, LLC.

157

highlight particular concerns for these communities
of practice. For a much more extensive and compre-
hensive overview of the topic, we refer the reader to
the recent consensus study report Reproducibility and
Replicability in Science (National Academies of
Sciences, Engineering, and Medicine 2019).

We follow the Claerbout/Donoho/Peng terminol-
ogy (Barba 2018) and distinguish reproduction
from replication1 and reproducibility to mean
computational reproducibility (National Academies
of Sciences, Engineering, and Medicine 2019).
Replicability is “the ultimate standard” (Peng 2011),
because it requires independent confirmation and
potentially yields new findings. Yet replication poses
fewer technological challenges: Hypotheses, results,
and conclusions are communicated with text and are
addressed by some form of peer review. A suitable
methodology for independent repetition can be
developed from the text. Replication demands, how-
ever, that a particular study can be replicated; that
is, that data sets used can be re-collected or compu-
tations can be repeated (Peng 2011). In studies
describing particular areas and time periods of the
Earth, this might not be possible; for instance, satel-
lite images or interviews can only be taken once, at
a particular moment in time, by a particular instru-
ment or person, respectively. Furthermore, large-
scale computations could be prohibitively expensive
to replicate (�Simko et al. 2019), specialized hardware
can be singular (Santana-Perez and P�erez-Hern�andez
2015), and real-time data streams would have to be
openly recorded constantly (cf. Brunsdon 2016).

When studies are impossible to replicate for con-
ceptual or practical reasons, reproducibility is the
only way we can ensure that a scientific claim can
be evaluated, and it becomes a minimal standard
(Peng 2011; Sandve et al. 2013). Open data alone
do not sufficiently guarantee reproducibility despite
great advancements driven by the FAIR principles
and research data management (see Wilkinson et al.
2016; Higman, Bangert, and Jones 2019), but work-
flows and processes must be open, too (Chen et al.
2019). The dynamic nature of the development pro-
cesses makes it particularly important that concerns
around computational reproducibility—that is, all
aspects of computers involved in research—are com-
prehensively considered from the start. Otherwise,
science falls short of communicating results effec-
tively, as stated in Claerbout and Karrenbach’s
claim: “An article about a computational result is

advertising, not scholarship. The actual knowledge is
the full software environment, code and data, that
produced the result” (adapted from Donoho [2010],
who paraphrased Claerbout and Karrenbach 1992).

So, science today is too complicated for brief
articles to fully communicate knowledge (Donoho
2010; Marwick 2015), and “[…] paradoxically, these
in-silico experiments are often more difficult to
reproduce than traditional laboratory techniques”
(Howe 2012, 36). Peng (2011) introduced a spectrum
of reproducibility, which is useful to inclusively
acknowledge limitations and identify the current
state of individual pieces of work and practices. Peng
(2011) further argued that researchers should not
wait for a comprehensive solution and concluded,
“developing a culture of reproducibility … will
require time and sustained effort” (1227). As part of
this effort, we present the following tools and discuss
challenges for reaching a high degree of computa-
tional reproducibility, fully communicating knowl-
edge, and making in silico experiments reproducible
when using and presenting geospatial data.

Reproducible Workflows in Geography
and Geosciences

Creating Reproducible Workflows

Scientists must realize how fragile the typical
research workflows are today. We have grown accus-
tomed to the experience that a computer-based anal-
ysis we conduct today still works tomorrow; yet,
although this is often the case, when there are differ-
ences, they can be very hard to explain, despite their
dramatic effect (as documented, e.g., in
Gronenschild et al. 2012; Bhandari Neupane et al.
2019). The lack of reported failures from geography
and geosciences is not reassuring, and measures to
improve reproducibility have been suggested. For
example, Gil et al. (2016) presented the Geoscience
Paper of the Future based on a thorough analysis of
developments and challenges, and they give useful
and concrete steps for modern digital open scholar-
ship; Singleton, Spielman, and Brunsdon (2016)
described a framework for reproducible publications
based on Open GIS, open data, and workflow mod-
els for an Open Geographic Information science
(Open GISc) going beyond text-centric publications.
Building on these ideas, we present a practical
approach for reproducible workflows and extend

2 N€ust and Pebesma

158

previous work with a deliberate management of the
computing environment.

A computing environment is the totality of hard-
ware and software components involved in a particu-
lar workflow. The description of the computing
environment must be understandable by both
machines and humans: by machines so that snap-
shots can be taken, the environment can be moved,
or infrastructure can provision required capabilities
(e.g., using ontologies; Santana-Perez and P�erez-
Hern�andez 2015); by humans so that failures can be
investigated and fixed. This documentation can be
crafted manually, generated with the assistance of
tools (e.g., Jupyter Project et al. 2018; N€ust and
Hinz 2019), or recorded as provenance; for example,
using scientific workflow management systems (see
National Academies of Sciences, Engineering, and
Medicine [2019], for details, which are beyond the
scope of this work). A well-defined computing envi-
ronment increases trust in the stability of results and
the chances that third parties can also execute an
analysis. Hirst (2019) coined three components of a
computing environment: physical, logical, and cultural.
The Examples and Conclusions sections cover the
cultural component.

The physical component is the hardware; for
example, the researcher’s laptop, a university’s high-
performance computing facility, a Global Positioning
System device, sensors, or instruments. Such devices
might be preserved physically and investigated if
problems arise but at very high costs (e.g., regular
testing and replacement of parts). These costs are
probably too high for regular research, and, at this
stage of reproducibility, physical components are too
rarely the source of critical issues. Thus, this compo-
nent must be documented in detail (e.g., product
names, IDs, manufacturing batches) and, where self-
built, have open construction plans. It is worth not-
ing here that quite often software has a much longer
life span than hardware, and outdated hardware can
often, although much later, be emulated by software.

To capture the logical component, common soft-
ware development methods, such as using a lan-
guage’s package manager and repository2 and
practicing version pinning in the respective configu-
ration files, allow freezing the logical component in
a specific state. Virtualization (Howe 2012) and con-
tainerization3 (Boettiger 2015) provide adequate sol-
utions to capture full software stacks; that is, both
programs’ researchers are aware of obvious and

unobvious dependencies (Perkel 2019). Containers
can be created from a recipe file, which provides an
additional layer of transparency and safeguarding
(N€ust and Hinz 2019) independent of the specific
container implementation (Santana-Perez and P�erez-
Hern�andez 2015), or even automatically in a deter-
ministic way (Jupyter Project et al. 2018). Container
preservation is actively researched (Rechert et al.
2017; Emsley and De Roure 2018). Such configura-
tion files and recipes can be managed using a version
control system for retracing errors and auditing
(Ram 2013). The application of Docker,4

Singularity,5 or supportive automating tools (Jupyter
Project et al. 2018) is a core skill for geoscientists
and geographers analyzing or visualizing data
with computers.

The goal of describing the computing environ-
ment is to allow others to re-create, scrutinize, or
extend it. This becomes more difficult when (1) the
logical component is directly linked with the physi-
cal component; for example, bespoke optimized soft-
ware for a particular computing, infrastructure, such
as high-performance computing; or (2) critical parts
of the computations involve proprietary software.6

A script-based workflow means that a user can exe-
cute a full analysis, starting from raw data up to visu-
alizations for publication, without any manual
intervention. Ideally the main control file is a digital
notebook following the literate programming para-
digm (Knuth 1984), thereby integrating text, docu-
mentation, visualization, mapping (Giraud and
Lambert 2017), and publication7 in a coherent way.
Jupyter (Kluyver et al. 2016; Rule et al. 2019) and R
Markdown (Xie 2015) are the two most commonly
used notebooks for practical reproducibility. Both
support various programming languages, hybrid work-
flows, and operating systems. All of the workflow’s
parts can be openly published in the form of a
research compendium (Gentleman and Temple Lang
2007), originally using a language’s packaging mech-
anism and later extended and demonstrated as a
powerful tool for scholarly communication.8 A self-
contained structured research compendium is
“preproducible” (Stark 2018), connects the actual
article with supplemental material (off-loading
details; cf. Greenbaum et al. 2017), and becomes an
executable research compendium (N€ust et al. 2017)
if it includes both container and notebook. All parts
of an (executable) research compendium must be
adequately licensed to allow use and extension (cf.

Practical Reproducibility in Geography and Geosciences 3

159

Stodden 2009) and use open formats
(Marwick 2015).

To summarize, authors, editors, reviewers, and
publishers can achieve the highest reproducibility
when they (1) familiarize themselves with common
guidance for reproducible research (e.g., Sandve
et al. 2013; The Turing Way Community et al.
2019), (2) consciously control computing environ-
ments, (3) use script-based workflows with note-
books, and (4) adhere to community practices for
research compendia. These steps can bring research-
ers close to the “gold standard” end of Peng’s (2011)
reproducibility spectrum.

Using Reproducible Workflows

Based on a research compendium, reviewers, stu-
dents, collaborators, and even the original authors
years later can interact with a piece of research in a
manner far beyond a classic “paper” article. Using a
common format for a research compendium eases
communication between authors and readers
(Marwick, Boettiger, and Mullen 2018; N€ust,
Boettiger, and Marwick 2018), and special infrastruc-
tures can be built to discover and interact with them
(Perkel 2019). Research compendia can even under-
pin intelligent systems (cf. Santana-Perez and P�erez-
Hern�andez 2015; Gil et al. 2016). There is not one
special infrastructure emerging yet, nor should there
be only one, because different approaches cater to
different needs and communities and different
actors—for example, publishers (Brunsdon 2016;
Harris et al. 2017)—may provide it. For example,
Code Ocean (Clyburne-Sherin, Fei, and Green
2019) is a commercial platform for researchers to
conduct their work online based on Jupyter. It part-
ners with publishers9 to give reviewers and readers
access to research compendia with a full develop-
ment environment. Konkol and Kray (2019)
described an enhanced examination workflow for sci-
entific papers based on executable research compen-
dia and used it to provide tailored interactive figures
(Konkol, Kray, and Suleiman 2019). The Whole
Tale (Brinckman et al. 2019) and BinderHub
(Jupyter Project et al. 2018) projects build open plat-
forms for reproducible research operated by research
organizations. Such platforms are the most effective
way today to leverage containerization for openly
publishing practical, reproducible workflows and
improving scholarly communication, without

requiring additional expertise beyond creating
research compendia.

Examples

The following examples illustrate the challenges,
solutions, and prevailing shortcomings. They extend
earlier collections of cases in geography (Brunsdon
2016), spatial data collection and analysis in ecology
(Lewis, Wal, and Fifield 2018), spatial statistics10

(Pebesma, Bivand, and Ribeiro 2015), and geosci-
ences (Konkol, Kray, and Pfeiffer 2019).11 A com-
prehensive reproducibility study in geography and
geosciences is needed to substantiate these
observations.

Spielman and Singleton (2015) studied neighbor-
hoods with data from the American Community
Survey and provided data and methods openly.12 We
applaud their efforts, which allowed us to partially
reproduce the workflow,13 such as setting a seed to
avoid problems with nondeterministic results. This
project, however, demonstrates typical shortcomings
and issues for reproducibility (see also Konkol, Kray,
and Pfeiffer 2019), such as lacking licenses, binary
formats for data, and a data repository requiring
login and acceptance of terms of use.

Marwick (2017) reported on a case study about
the analysis of data from an archaeological excava-
tion, with inherently geospatial data. In detail and
suitable for a nontechnical audience, Marwick
described all considerations and concrete actions for
data archiving, scripting, publishing, and containeri-
zation of the computing environment.

Knoth and N€ust (2017) containerized a complex
geographic object-based image analysis workflow
using open source tools in a discipline where one
proprietary software is ubiquitous. The work demon-
strates how a combination of free tools can re-create
a proprietary analysis workflow, and it shows how
containerization can make it reusable by exposing
configuration parameters and making the data set
exchangeable.

Shannon and Walker (2018) described two case
studies in housing and urban diversity for public-fac-
ing geographic research. The case studies entail
shiny-based applications (Chang et al. 2020) with
interactive plots and maps for nonexpert users to
improve community engagement, which we could
easily inspect and reproduce. The authors nicely use
openness for transparency and provide synthetic data

4 N€ust and Pebesma

160

to handle data privacy, but the published code is
sparsely documented and lacks licensing information,
which hampers reuse and extension.

Verstegen (2019) published code and data for a
land use change model based on PCRaster and a
Python script (cf. Verstegen et al. 2012). The reposi-
tory includes a container for ease of use and trans-
parently communicates (despite lacking a notebook
document) which parts of the workflow reproduce
which figure and what changes were made to the
code after the original article publication.

Challenges for Practical Reproducibility in
Geography and Geosciences

Geography and geosciences are diverse disciplines,
and their community members have equally diverse
backgrounds, many of which do not include a famil-
iarity with computational methods or software devel-
opment. This diversity leads to challenges in
adopting practical reproducibility in education and
publishing. The focus on practical solutions in this
work can inform these adaptations, which must be
accompanied by changes of habits by individuals and
at different organizational levels, such as research
labs (cf. N€ust, Boettiger, and Marwick 2018). The
large body of experience from other domains and
best practices (Sandve et al. 2013; Stodden and
Miguez 2014; Boettiger 2015; Eglen et al. 2017;
Greenbaum et al. 2017; Marwick 2017; Eglen et al.
2018; Marwick, Boettiger, and Mullen 2018; N€ust
et al. 2019; P�erignon et al. 2019; Rule et al. 2019;
Sch€onbrodt 2019; �Simko et al. 2019) does not limit
self-improvement and further training, but the
amount of information might seem overwhelming.
In a similar way, ongoing disruptions and innova-
tions in scholarly publishing (cf. Gil et al. 2016;
Singleton, Spielman, and Brunsdon 2016; Eglen
et al. 2018; Tennant et al. 2019) pose challenges for
geographers and geoscientists in their roles as
authors, reviewers, and editors, especially for early
career researchers and due to a complex mixture of
community, commercial, and political interests.

Giraud and Lambert (2017) described the multi-
plicity of tools in the cartographic process as an
impediment for reproducibility. They transferred
Peng’s spectrum into a spectrum of map reproducibil-
ity and set the equivalent of a research compendium
(linked and executable code and data) at the highest
level. They argued that cartography is often

considered a design process and an art, but this
should not be at the cost of reproducibility, for
example, due to manual tweaking of visual appear-
ances. Konkol, Kray, and Pfeiffer (2019) even found
that the differences in the created maps were an
effective way to assess reproducibility. Similar to the
aforementioned spectra, Wilson et al. (2020) present
a five-star classification for sharing geospatial
research, addressing challenges in geographic infor-
mation systems (GIS) software and algorithms.

Geospatial data and processing are often realized
via spatial data infrastructures, such as the data,
processing, and map interfaces by the Open
Geospatial Consortium or OpenStreetMap. Online
services pose a challenge for reproducibility, because
they could change over time or disappear. A service-
oriented approach, however, also promises improve-
ment through standardization, less duplication of
effort, and easier translation into different tools for
cross-validation (Wilson et al. 2020). Still, the code
to access geoservices and the requests sent as well as
the retrieved responses must all be stored (cf. real-
time data; Brunsdon 2016) to build a research com-
pendium. When analyzing large data sets, processing
is increasingly shifted to remote infrastructures closer
to the data, which requires open availability not
only of the application programming interface but
also of the implementations (Hinz et al. 2013;
Pebesma et al. 2017). “Free” platforms, such as
Google Earth Engine, provide complex script-based
processing to a broad audience, but the analyses are
not reproducible because the computational environ-
ment cannot be captured or inspected in full (Sidhu,
Pebesma, and Câmara 2018). When creating
research compendia, compromises can be made as to
the amount of detail they include to reduce storage
size; for example, include only relevant data after
preprocessing or allow referencing data in trusted
data repositories or spatial data infrastructures (N€ust
and Schutzeichel 2017).

Qualitative GIS was judged as nonreproducible by
Preston and Wilson (2014), partially due to their
mixed-methods approach. In our view, however,
such an approach does not free researchers to work
as reproducible as possible. Data collection and crea-
tion of visualizations can be reproducible and should
be, because maps are commonly used for interaction
with study participants during data collection and
for communicating results. Muenchow, Sch€afer, and
Kr€uger (2019) reviewed the body of work in

Practical Reproducibility in Geography and Geosciences 5

161

qualitative GIS research and identified reproducibil-
ity as having promising potential for the field.

Prevailing GIS software is based on a graphical
user interface, proprietary, or both. To fix these limi-
tations, either these tools must be updated to pro-
vide an executable workflow (i.e., recording a trace
of the user interactions; cf. Brunsdon 2016) or
researchers need to switch to open tools to achieve a
unified toolchain (Giraud and Lambert 2017) and to
avoid the risk of a digital divide but rather enable
faster collaborative development (cf. Muenchow,
Sch€afer, and Kr€uger 2019). Proprietary software
might in some cases be user friendly for conducting
research, and Open Source alternatives require a
higher computer literacy (Muenchow, Sch€afer, and
Kr€uger 2019), but such closed tools are ultimately
unsuitable for science: No access to source code pro-
hibits examination and extension of methods and
can increase the potential of errors (Singleton,
Spielman, and Brunsdon 2016) and restrictive non-
open license agreements prohibit reproduction by
others without access or even by authors at a future
point in time (Eaton 2012; Lees 2012; Singleton,
Spielman, and Brunsdon 2016). Most important,
open software stacks much better with core tools for
practical reproducibility. The pace of digitization
and the trend toward openness (cf. Nosek et al.
2015) put pressure on scientists at all career stages
to switch to open tools14 and require future geo-
scientists and geographers to be trained as “Pi-shaped
researchers” with a deep knowledge both in their
domain as well as in reproducibility and computing
(Marwick 2017).

Limitations of sensitive data are commonly men-
tioned impediments to practical reproducibility, but
various solutions exist. O’Loughlin et al. (2015) dis-
cussed the balance of disclosure and source protec-
tion in the field of political geography, and they
mentioned redaction as a means to check research
using quantitative data and statistical data rigorously.
These limitations can also be seen as a need in
establishing processes and providing infrastructure
for controlled access to research compendia.
P�erignon et al. (2019) and Foster (2018) described
the tensions between reproducibility and data pri-
vacy, and they presented a public research infrastruc-
ture for confidential government data in France and
cloud-based data enclaves. Shannon and Walker
(2018) suggested an analysis infrastructure that
restricts access to raw data and only provides derived

results. In the context of geocomputation, Brunsdon
argued the advantages of “‘domains of reproducibil-
ity’—that is, groups of people who are permitted to
access this information adopting reproducible practi-
ces amongst themselves—so that internal scrutiny,
and updating of analyses becomes easier” (Harris
et al. 2017, 608).

An approach to reduce the limitations induced by
big, proprietary, export-controlled, or sensitive data
is providing a synthetic data set (e.g., Shannon and
Walker 2018). A data set of more manageable size
reduces storage space as well as workflow execution
time. Made-up data prevent deanonymization and
can be tailored to illustrate the method. A copy of
the original data within the research compendium
ensures consistency and accessibility, but synthetic
data, anonymized data, or data subsets allow third
parties to evaluate, understand, validate, and build
on methods.

Reproducibility of computational methods is fur-
ther constrained by time. The fact that all presented
platforms and tools are open themselves facilitates
archival and maintenance, yet the reproduction of
workflows in more than ten years is an open chal-
lenge beyond geography and geosciences. The Ten
Years Challenge by the journal ReScience15 is an
example for learning more about problems and solu-
tions for long-term reproducibility. Because we can-
not foresee what future computers will look like, a
research compendium that can be reproduced today,
for example, as part of a peer review (Eglen and
N€ust 2019) ensures that everything needed is there
and ensures a starting point for future generations of
geographers, geoscientists, and science historians.

Conclusions

In this article we describe practical solutions that
facilitate computational reproducibility in scholarly
communication. Wilson and Burrough (1999) stated
on a new geography, “It is also clear that improved
understanding of landscapes comes … from the
study of large quantities of data in a reproducible
data-handling environment that extends from the
field to the laboratory and the computer” (743).
They further argued for the adoption of new meth-
ods and that “geographers will need to be comfort-
able in new sneakers that incorporate the [new
methods]” (Wilson and Burrough 1999, 743). As the
new method, we suggest replacing traditional text-

6 N€ust and Pebesma

162

centric research papers as the final product of
research with executable research compendia: digital
artifacts that encapsulate the data, the script-based
workflow and its computing environment, and the
article based on a notebook.

The emerging infrastructure for research compen-
dia greatly reduces the needed software engineering
skills, yet a lack of academic recognition for open-
ness and reproducibility and a lack of hard, minimal
requirements posed by editorial boards of scientific
journals still keep scientists from adopting methods
supporting practical reproducibility. Chen et al.
(2019) rightly argued that new research practices
must be tailored to the needs of scientific disciplines.
In geography and geosciences, this discourse has just
started (Pebesma, N€ust, and Bivand 2012a, 2012b;
Gil et al. 2016; N€ust, Boettiger, and Marwick 2018;
Kedron et al. 2019, and the articles of this Forum).
These scientific communities must decide which
degree of reproducibility is “good enough,” but we
believe that in most cases “very, very close to the
original” is feasible and practical. Irrespective of
whether the “reproducibility crisis” does or does not
exist (cf. Fanelli 2018), the benefits of working
reproducibly are by now clear. Technical, systemic,
and cultural barriers are conquerable. The advan-
tages of reproducibility for scientific progress lie in
strengthened trust in results through transparency,
higher productivity through openness, and more
innovation through collaboration and exploration of
new pathways. The scientific community should
embrace the disruptions in scholarly publishing and
reap the benefits and advantages by setting up new
platforms and standards for scholarly communication
(e.g., Munaf�o et al. 2017; Kray et al. 2019). The
maxim of the new technology for practical reproduc-
ibility should be open source software implementing
an open and self-correcting public infrastructure con-
trolled by scientists (cf. Buck 2015; Santana-Perez
and P�erez-Hern�andez 2015; Munaf�o et al. 2017).

Acknowledgments

We thank Celeste R. Brennecka from the
Scientific Editing Service, University of M€unster, for
her editorial review. Two anonymous reviewers pro-
vided valuable comments on an earlier version of
this article. We thank the organizers of the work-
shop on Reproducibility and Replicability in
Geospatial Research at Arizona State University and

of the subsequent Forum for the opportunities
to contribute.

Funding

This work is supported by the project Opening
Reproducible Research II (https://www.uni-muenster.
de/forschungaz/project/12343) funded by the German
Research Foundation (DFG) under project number
PE 1632/17-1.

ORCID

Daniel N€ust http://orcid.org/0000-0002-0024-5046
Edzer Pebesma http://orcid.org/0000-0001-
8049-7069

Notes

1. Reproduction means that the authors’ materials are
available for third parties to re-create identical results,
whereas replication means different data and methods
lead to the same findings. From a computational
standpoint, identical is more complicated than it
sounds; for example, floating point computations might
result in small yet insignificant numerical differences,
or image-rendering algorithms might introduce
nondeterministic artifacts.

2. For example, CRAN (https://cran.r-project.org) and
renv (https://cran.r-project.org/package = renv) for R,
or PyPI (https://pypi.org/) and conda (https://conda.
io) for Python, which even has tooling for
separating full installations in virtual environments;
for example, virtualenv (https://virtualenv.pypa.io).

3. For the simplicity of the argument, we use recipe
instead of Dockerfile and containers as a catch-all
term, whereas the experienced reader might expect a
distinction between container and image.

4. Docker is the most common containerization
solution today (see https://en.wikipedia.org/wiki/
Docker_(software)). It is open source, and relevant
parts are standardized (see https://www.opencontainers.
org/).

5. Singularity is mostly used in scientific contexts and
high-performance computing, see Kurtzer, Sochat,
and Bauer (2017).

6. Proprietary software cannot be avoided in some
areas, such as the system BIOS or device drivers.

7. The notebook might render directly into submission-
ready manuscripts with R Markdown and the rticles
package by Allaire et al. (2020), which supports a
variety of journals, including the publisher of the
Annals, Taylor & Francis, and other publishers close
to the disciplines such as AGU or Copernicus
Publications (EGU).

8. See https://research-compendium.science/ for a
minimal definition, extensive literature, and examples.

Practical Reproducibility in Geography and Geosciences 7

163

The R (R Core Team 2019) community is at the
forefront of enabling reproducibility both in the
available tools and in the mindset of the user
community (e.g., Pebesma, N€ust, and
Bivand 2012b; Marwick 2015).

9. For example, Sage (Estop 2019), De Gruyter (Code
Ocean 2018), or Nature (“Easing the Burden of
Code Review” 2018).

10. All articles in this special issue on software for
spatial statistics in the Journal of Statistical Software
are in principle reproducible, but these articles by
software developers are probably not representative
of the whole community using the software.

11. The largest study to date, it reproduced thirty-one
research articles. See the full list at https://osf.
io/sfqjg/.

12. Code on GitHub: https://github.com/geoss/acs_
demographic_clusters; data on openICPSR: http://
doi.org/10.3886E41329V1.

13. A summary of the issues, changes, suggestions, and
subsequent communication with the authors is
available at https://github.com/geoss/acs_demographic_
clusters/issues/2.

14. The Carpentries (https://carpentries.org/) is an
excellent resource to learn data science skills outside
of topical studies.

15. See https://rescience.github.io/ten-years/.

References

Allaire, J. J., Y. Xie, R Foundation, H. Wickham, Journal
of Statistical Software, R. Vaidyanathan, Association
for Computing Machinery, et al. 2020. rticles: Article
formats for R markdown. CRAN. R package version
0.14.1. Accessed August 31, 2020. https://github.com/
rstudio/rticles.

Barba, L. A. 2018. Terminologies for reproducible
research. arXiv:1802.03311. http://arxiv.org/abs/1802.
03311.

Barnes, N. 2010. Publish your computer code: It is good
enough. Nature News 467 (7317):753. doi: 10.1038/
467753a.

Bhandari Neupane, J., R. P. Neupane, Y. Luo, W. Y.
Yoshida, R. Sun, and P. G. Williams. 2019.
Characterization of leptazolines A–D, polar oxazolines
from the cyanobacterium Leptolyngbya sp., reveals a
glitch with the “Willoughby–Hoye” scripts for calcu-
lating NMR chemical shifts. Organic Letters 21
(20):8449–53. doi: 10.1021/acs.orglett.9b03216.

Boettiger, C. 2015. An introduction to Docker for repro-
ducible research. ACM SIGOPS Operating Systems
Review 49 (1):71–79. doi: 10.1145/2723872.2723882.

Brinckman, A., K. Chard, N. Gaffney, M. Hategan, M. B.
Jones, K. Kowalik, S. Kulasekaran, B. Ludascher, B.
D. Mecum, J. Nabrzyski, et al. 2019. Computing envi-
ronments for reproducibility: Capturing the “Whole
Tale.” Future Generation Computer Systems 94:854–67.
doi: 10.1016/j.future.2017.12.029.

Brunsdon, C. 2016. Quantitative methods I: Reproducible
research and quantitative geography. Progress in

Human Geography 40 (5):687–96. doi: 10.1177/
0309132515599625.

Buck, S. 2015. Solving reproducibility. Science 348
(6242):1403. doi: 10.1126/science.aac8041.

Chang, W., J. Cheng, J. J. Allaire, Y. Xie, and J.
McPherson. 2020. shiny: Web application framework for
R. CRAN. R package version 1.4.0.2. Accessed
August 31, 2020. https://CRAN.R-project.org/pack-
age=shiny.

Chen, X., S. Dallmeier-Tiessen, R. Dasler, S. Feger, P.
Fokianos, J. B. Gonzalez, H. Hirvonsalo, D. Kousidis,
A. Lavasa, S. Mele, et al. 2019. Open is not enough.
Nature Physics 15 (2):113–19. doi: 10.1038/s41567-
018-0342-2.

Claerbout, J., and M. Karrenbach. 1992. Electronic docu-
ments give reproducible research a new meaning. In
SEG Technical Program Expanded Abstracts 1992,
601–4. Tulsa, OK: Society of Exploration
Geophysicists. doi: 10.1190/1.1822162.

Clyburne-Sherin, A., X. Fei, and S. A. Green. 2019.
Computational reproducibility via containers in psy-
chology. Meta-Psychology 3. doi: 10.15626/MP.2018.
892.

Code Ocean. 2018. De Gruyter partners with Code Ocean to
improve research reproducibility. Accessed April 24,
2020. https://codeocean.com/press-release/de-gruyter-part-
ners-with-code-ocean-to-improve-research-reproducibility.

Donoho, D. L. 2010. An invitation to reproducible com-
putational research. Biostatistics 11 (3):385–88. doi:
10.1093/biostatistics/kxq028.

Easing the burden of code review [editorial]. 2018. Nature
Methods 15 (9):641. doi: 10.1038/s41592-018-0137-5.

Eaton, J. W. 2012. GNU Octave and reproducible
research. Journal of Process Control 22 (8):1433–38.
doi: 10.1016/j.jprocont.2012.04.006.

Eglen, S. J., B. Marwick, Y. O. Halchenko, M. Hanke, S.
Sufi, P. Gleeson, R. A. Silver, A. P. Davison, L.
Lanyon, M. Abrams, et al. 2017. Toward standard
practices for sharing computer code and programs in
neuroscience. Nature Neuroscience 20 (6):770–73. doi:
10.1038/nn.4550.

Eglen, S. J., R. Mounce, L. Gatto, A. M. Currie, and Y.
Nobis. 2018. Recent developments in scholarly pub-
lishing to improve research practices in the life scien-
ces. Emerging Topics in Life Sciences 2 (6):775–78. doi:
10.1042/ETLS20180172.

Eglen, S. J., and D. N€ust. 2019. CODECHECK: An
open-science initiative to facilitate sharing of com-
puter programs and results presented in scientific pub-
lications. In The 14th Munin Conference on Scholarly
Publishing 2019, Septentrio Conference Series.
University Library, UiT The Arctic University of
Norway. https://doi.org/10.7557/5.4910.

Emsley, I., and D. De Roure. 2018. A framework for the
preservation of a Docker container. International
Journal of Digital Curation 12 (2):125–35. doi: 10.
2218/ijdc.v12i2.509.

Estop, H. 2019. SAGE trials Code Ocean to improve
research reproducibility. Accessed April 24, 2020.
https://journalsblog.sagepub.com/blog/sage-trials-code-
ocean-to-improve-research-reproducibility.

8 N€ust and Pebesma

164

Fanelli, D. 2018. Opinion: Is science really facing a repro-
ducibility crisis, and do we need it to? Proceedings of
the National Academy of Sciences 115 (11):2628–31.
doi: 10.1073/pnas.1708272114.

Foster, I. 2018. Research infrastructure for the safe analy-
sis of sensitive data. The Annals of the American
Academy of Political and Social Science 675 (1):102–20.
doi: 10.1177/0002716217742610.

Gentleman, R., and D. Temple Lang. 2007. Statistical
analyses and reproducible research. Journal of
Computational and Graphical Statistics 16 (1):1–23. doi:
10.1198/106186007X178663.

Gil, Y., C. H. David, I. Demir, B. T. Essawy, R. W.
Fulweiler, J. L. Goodall, L. Karlstrom, H. Lee, H. J.
Mills, J.-H. Oh, et al. 2016. Toward the geoscience
paper of the future: Best practices for documenting
and sharing research from data to software to prove-
nance. Earth and Space Science 3 (10):388–415. doi:
10.1002/2015EA000136.

Giraud, T., and N. Lambert. 2017. Reproducible cartogra-
phy. In Advances in cartography and GIScience, ed. M.
P. Peterson, 173–83. Cham, Switzerland: Springer.
doi:10.1007/978-3-319-57336-6_13.

Greenbaum, D., J. Rozowsky, V. Stodden, and M.
Gerstein. 2017. Structuring supplemental materials in
support of reproducibility. Genome Biology 18 (1):64.
doi: 10.1186/s13059-017-1205-3.

Gronenschild, E. H. B. M., P. Habets, H. I. L. Jacobs, R.
Mengelers, N. Rozendaal, J. van Os, and M. Marcelis.
2012. The effects of FreeSurfer version, workstation
type, and Macintosh operating system version on ana-
tomical volume and cortical thickness measurements.
PLoS ONE 7 (6):e38234. doi: 10.1371/journal.pone.
0038234.

Harris, R., D. O’Sullivan, M. Gahegan, M. Charlton, L.
Comber, P. Longley, C. Brunsdon, N. Malleson, A.
Heppenstall, A. Singleton, et al. 2017. More bark
than bytes? Reflections on 21þ years of geocomputa-
tion. Environment and Planning B: Urban Analytics and
City Science 44 (4):598–617. doi: 10.1177/
2399808317710132.

Higman, R., D. Bangert, and S. Jones. 2019. Three camps,
one destination: The intersections of research data
management, FAIR and open. Insights 32 (1):1–9.
doi:10.1629/uksg.468.

Hinz, M., D. N€ust, B. Proß, and E. Pebesma. 2013. Spatial
statistics on the geospatial Web. In The 16th AGILE
International Conference on Geographic Information
Science, Short papers. AGILE, ed. D. Vandenbroucke, B.
Bucher, and J. Crompvoets, 1–7. Leuven, Belgium:
AGILE. https://doi.org/10.31223/osf.io/j8x2e.

Hirst, T. 2019. “Fragment—Some rambling thoughts on
computing environments in education. Accessed
April 24, 2020. https://blog.ouseful.info/2019/03/20/
fragment-some-rambling-thoughts-on-computing-envi-
ronments-in-education/.

Howe, B. 2012. Virtual appliances, cloud computing, and
reproducible research. Computing in Science &
Engineering 14 (4):36–41. doi: 10.1109/MCSE.2012.62.

Jupyter Project, M. Bussonnier, J. Forde, J. Freeman, B.
Granger, T. Head, C. Holdgraf, K. Kelley, G.
Nalvarte, A. Osheroff, et al. 2018. Binder 2.0—

Reproducible, interactive, sharable environments for
science at scale. Proceedings of the 17th Python in
Science Conference, 113–20. https://doi.org/10.25080/
Majora-4af1f417-011.

Kedron, P., A. E. Frazier, A. B. Trgovac, T. Nelson, and
A. S. Fotheringham. 2019. Reproducibility and repli-
cability in geographical analysis. Geographical
Analysis. Advance online publication. doi: 10.1111/
gean.12221.

Kluyver, T., B. Ragan-Kelley, F. P�erez, B. Granger, M.
Bussonier, J. Frederic, K. Kelley, et al. 2016. Jupyter
Notebooks—A publishing format for reproducible
computational workflows. In Proceedings of the 20th
International Conference on Electronic Publishing, ed. F.
Loizides and B. Schmidt, 87–90. Amsterdam, The
Netherlands. https://doi.org/10.3233/978-1-61499-649-
1-87.

Knoth, C., and D. N€ust. 2017. Reproducibility and practi-
cal adoption of GEOBIA with open-source software
in Docker containers. Remote Sensing 9 (3):290. doi:
10.3390/rs9030290.

Knuth, D. E. 1984. Literate programming. The Computer
Journal 27 (2):97–111. doi: 10.1093/comjnl/27.2.97.

Konkol, M., and C. Kray. 2019. In-depth examination of
spatiotemporal figures in open reproducible research.
Cartography and Geographic Information Science 46
(5):412–27. doi:10.1080/15230406.2018.1512421.

Konkol, M., C. Kray, and M. Pfeiffer. 2019.
Computational reproducibility in geoscientific papers:
Insights from a series of studies with geoscientists and
a reproduction study. International Journal of
Geographical Information Science 33 (2):408–29. doi:
10.1080/13658816.2018.1508687.

Konkol, M., C. Kray, and J. Suleiman. 2019. Creating
interactive scientific publications using bindings.
Proceedings of the ACM on Human-Computer
Interaction 3:1–16. doi: 10.1145/3331158.

Kray, C., E. Pebesma, M. Konkol, and D. N€ust. 2019.
Reproducible research in geoinformatics: Concepts,
challenges and benefits (Vision paper). In 14th
International Conference on Spatial Information Theory
(COSIT 2019), ed. S. Timpf, C. Schlieder, M.
Kattenbeck, B. Ludwig, and K. Stewart, 1–8. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.COSIT.2019.8.

Kurtzer, G. M., V. Sochat, and M. W. Bauer. 2017.
Singularity: Scientific containers for mobility of com-
pute. PLoS ONE 12 (5):e0177459. doi: 10.1371/jour-
nal.pone.0177459.

Lees, J. M. 2012. Open and free: Software and scientific
reproducibility. Seismological Research Letters 83
(5):751–52. doi: 10.1785/0220120091.

Lewis, K. P., E. Vander Wal, and D. A. Fifield. 2018.
Wildlife biology, big data, and reproducible research.
Wildlife Society Bulletin 42 (1):172–79. doi: 10.1002/
wsb.847.

Markowetz, F. 2015. Five selfish reasons to work reproduc-
ibly. Genome Biology 16:274. doi: 10.1186/s13059-
015-0850-7.

Marwick, B. 2015. How computers broke science—and
what we can do to fix it. Accessed April 24, 2020.

Practical Reproducibility in Geography and Geosciences 9

165

https://theconversation.com/how-computers-broke-sci-
ence-and-what-we-can-do-to-fix-it-49938.

Marwick, B. 2017. Computational reproducibility in
archaeological research: Basic principles and a case
study of their implementation. Journal of
Archaeological Method and Theory 24 (2):424–50. doi:
10.1007/s10816-015-9272-9.

Marwick, B., C. Boettiger, and L. Mullen. 2018.
Packaging data analytical work reproducibly using R
(and friends). The American Statistician 72 (1):80–88.
doi: 10.1080/00031305.2017.1375986.

Muenchow, J., S. Sch€afer, and E. Kr€uger. 2019.
Reviewing qualitative GIS research—Toward a wider
usage of open-source GIS and reproducible research
practices. Geography Compass 13 (6). doi: 10.1111/
gec3.12441.

Munaf�o, M. R., B. A. Nosek, D. V. M. Bishop, K. S.
Button, C. D. Chambers, N. Percie Du Sert, U.
Simonsohn, E-J. Wagenmakers, J. J. Ware, and J. P.
A. Ioannidis, 2017. A manifesto for reproducible sci-
ence. Nature Human Behaviour 1:0021. doi: 10.1038/
s41562-016-0021.

National Academies of Sciences, Engineering, and
Medicine. 2019. Reproducibility and replicability in sci-
ence. Washington, DC: National Academies Press.
doi: 10.17226/25303.

Nosek, B. A., G. Alter, G. C. Banks, D. Borsboom, S. D.
Bowman, S. J. Breckler, S. Buck, C. D. Chambers, G.
Chin, G. Christensen, et al. 2015. Scientific stand-
ards: Promoting an open research culture. Science 348
(6242):1422–25. doi: 10.1126/science.aab2374.

N€ust, D., C. Boettiger, and B. Marwick. 2018. How to
read a research compendium. arXiv:1806.09525.
http://arxiv.org/abs/1806.09525.

N€ust, D., C. Granell, B. Hofer, M. Konkol, F. O.
Ostermann, R. Sileryte, and V. Cerutti. 2018.
Reproducible research and GIScience: An evaluation
using AGILE conference papers. PeerJ 6:e5072. doi:
10.7717/peerj.5072.

N€ust, D., and M. Hinz. 2019. containerit: Generating
Dockerfiles for reproducible research with R. Journal
of Open Source Software 4 (40):1603. doi: 10.21105/
joss.01603.

N€ust, D., M. Konkol, E. Pebesma, C. Kray, M.
Schutzeichel, H. Przibytzin, and J. Lorenz. 2017.
Opening the publication process with executable
research compendia. D-Lib Magazine 23 (1–2). doi:
10.1045/january2017-nuest.

N€ust, D., F. Ostermann, R. Sileryte, B. Hofer, C. Granell,
M. Teperek, A. Graser, K. Broman, and K. Hettne.
2019. AGILE reproducible paper guidelines. OSF. doi:
10.17605/OSF.IO/CB7Z8.

N€ust, D., and M. Schutzeichel. 2017. An architecture
for reproducible computational geosciences. Poster
presented at AGILE 2017, Wageningen, The
Netherlands, June. doi:10.5281/zenodo.1478542.

O’Loughlin, J., P. Raento, J. P. Sharp, J. D. Sidaway, and
P. E. Steinberg. 2015. Data ethics: Pluralism, replica-
tion, conflicts of interest, and standards in political
geography. Political Geography 44:A1–A3. doi:10.1016/
j.polgeo.2014.11.001.

Pebesma, E., R. Bivand, and P. J. Ribeiro. 2015. Software
for spatial statistics. Journal of Statistical Software 63
(1):1–8. doi:10.18637/jss.v063.i01.

Pebesma, E., D. N€ust, and R. Bivand. 2012a. R for repro-
ducible geographical research. Paper presented at the
AAG Annual Meeting 2012, New York, February 24.
Accessed August 31, 2020. http://pebesma.staff.ifgi.de/
r_repr.pdf.

Pebesma, E., D. N€ust, and R. Bivand. 2012b. The R soft-
ware environment in reproducible geoscientific
research. Eos: Transactions of the American Geophysical
Union 93 (16):163. doi: 10.1029/2012EO160003.

Pebesma, E., W. Wagner, M. Schramm, A. V. Beringe, C.
Paulik, M. Neteler, and J. Reiche. 2017. OpenEO—A
common, open source interface between Earth obser-
vation data infrastructures and front-end applications.
Zenodo. https://doi.org/10.5281/zenodo.1065474.

Peng, R. D. 2011. Reproducible research in computational
science. Science 334 (6060):1226–27. doi: 10.1126/sci-
ence.1213847.

P�erignon, C., K. Gadouche, C. Hurlin, R. Silberman, and
E. Debonnel. 2019. Certify reproducibility with confi-
dential data. Science 365 (6449):127–28. doi: 10.
1126/science.aaw2825.

Perkel, J. M. 2019. Make code accessible with these cloud
services. Nature 575 (7781):247–48. doi: 10.1038/
d41586-019-03366-x.

Piwowar, H. 2013. Altmetrics: Value all research prod-
ucts. Nature 493 (7431):159. doi: 10.1038/493159a.

Preston, B., and M. W. Wilson. 2014. Practicing GIS as
mixed method: Affordances and limitations in an
urban gardening study. Annals of the Association of
American Geographers 104 (3):510–29. doi: 10.1080/
00045608.2014.892325.

R Core Team. 2019. R: A language and environment for
statistical computing. Vienna, Austria: R Foundation
for Statistical Computing. https://www.R-project.org/.

Ram, K. 2013. Git can facilitate greater reproducibility
and increased transparency in science. Source Code for
Biology and Medicine 8 (1):7. doi: 10.1186/1751-0473-
8-7.

Rechert, K., T. Liebetraut, S. Kombrink, D. Wehrle, S.
Mocken, and M. Rohland. 2017. Preserving containers.
In Forschungsdaten managen, ed. J. Kratzke and V.
Heuveline, 143–51. Heidelberg, Germany: heiBOOKS.
http://books.ub.uni-heidelberg.de/heibooks/catalog/book/
285.

Rule, A., A. Birmingham, C. Zuniga, I. Altintas, S.-C.
Huang, R. Knight, N. Moshiri, M. H. Nguyen, S. B.
Rosenthal, F. Perez, et al. 2019. Ten simple rules for
writing and sharing computational analyses in Jupyter
Notebooks. PLoS Computational Biology 15 (7):e1007007.
doi: 10.1371/journal.pcbi.1007007.

Sandve, G. K., A. Nekrutenko, J. Taylor, and E. Hovig.
2013. Ten simple rules for reproducible computational
research. PLoS Computational Biology 9 (10):e1003285.
doi: 10.1371/journal.pcbi.1003285.

Santana-Perez, I., and M. S. P�erez-Hern�andez. 2015.
Towards reproducibility in scientific workflows: An
infrastructure-based approach. Scientific Programming
2015:1–11. doi: 10.1155/2015/243180.

10 N€ust and Pebesma

166

Sch€onbrodt, F. 2019. Training students for the open sci-
ence future. Nature Human Behaviour 3 (10):1031.
doi: 10.1038/s41562-019-0726-z.

Shannon, J., and K. Walker. 2018. Opening GIScience:
A process-based approach. International Journal of
Geographical Information Science 32 (10):1911–26. doi:
10.1080/13658816.2018.1464167.

Sidhu, N., E. Pebesma, and G. Câmara. 2018. Using
Google Earth Engine to detect land cover change:
Singapore as a use case. European Journal of Remote
Sensing 51 (1):486–500. doi:10.1080/22797254.2018.
1451782.

�Simko, T., L. Heinrich, H. Hirvonsalo, D. Kousidis, and
D. Rodr�ıguez. 2019. REANA: A system for reusable
research data analyses. EPJ Web of Conferences 214.
doi: 10.1051/epjconf/201921406034.

Singleton, A. D., S. Spielman, and C. Brunsdon. 2016.
Establishing a framework for open geographic infor-
mation science. International Journal of Geographical
Information Science 30 (8):1507–21. doi: 10.1080/
13658816.2015.1137579.

Spielman, S. E., and A. Singleton. 2015. Studying neigh-
borhoods using uncertain data from the American
Community Survey: A contextual approach. Annals
of the Association of American Geographers 105
(5):1003–25. doi: 10.1080/00045608.2015.1052335.

Stark, P. B. 2018. Before reproducibility must come pre-
producibility. Nature 557:613. doi: 10.1038/d41586-
018-05256-0.

Stodden, V. 2009. The legal framework for reproducible
scientific research: Licensing and copyright.
Computing in Science & Engineering 11 (1):35–40. doi:
10.1109/MCSE.2009.19.

Stodden, V., and S. Miguez. 2014. Best practices for compu-
tational science: Software infrastructure and environ-
ments for reproducible and extensible research. Journal of
Open Research Software 2 (1):e21. doi: 10.5334/jors.ay.

Stodden, V., J. Seiler, and Z. Ma. 2018. An empirical
analysis of journal policy effectiveness for computa-
tional reproducibility. Proceedings of the National
Academy of Sciences of the United States of America
115 (11):2584–89. doi: 10.1073/pnas.1708290115.

Sui, D., and P. Kedron. 2020. Reproducibility and replica-
bility in the context of the contested identities of
geography. Annals of the American Association of
Geographers. doi: 10.1080/24694452.2020.1806024.

Sui, D., and S.-L. Shaw. 2018. Outlook and next steps:
From human dynamics to smart and connected com-
munities. In Human dynamics research in smart and
connected communities, ed. S.-L. Shaw and D. Sui,
235–45. Cham, Switzerland: Springer International.
doi: 10.1007/978-3-319-73247-3_13.

Tennant, J. P., H. Crane, T. Crick, J. Davila, A.
Enkhbayar, J. Havemann, B. Kramer, R. Martin, P.
Masuzzo, A. Nobes, et al. 2019. Ten hot topics
around scholarly publishing. Publications 7 (2):34. doi:
10.3390/publications7020034.

The Turing Way Community, B. Arnold, L. Bowler, S.
Gibson, P. Herterich, R. Higman, A. Krystalli, A.

Morley, M. O'Reilly, and K. Whitaker. 2019. The
Turing Way: A handbook for reproducible data science.
Zenodo. https://doi.org/10.5281/zenodo.3233986.

Vandewalle, P., J. Kovacevic, and M. Vetterli. 2009.
Reproducible research in signal processing. IEEE
Signal Processing Magazine 26 (3):37–47. doi: 10.1109/
MSP.2009.932122.

Verstegen, J. A. 2019. JudithVerstegen/PLUC_Mozambique:
First release of PLUC for Mozambique (Version v1.0.0).
Zenodo. https://doi.org/10.5281/zenodo.3519987.

Verstegen, J. A., D. Karssenberg, F. van der Hilst, and A.
Faaij. 2012. Spatio-temporal uncertainty in spatial
decision support systems: A case study of changing
land availability for bioenergy crops in Mozambique.
Computers, Environment and Urban Systems 36
(1):30–42. doi: 10.1016/j.compenvurbsys.2011.08.003.

Wainwright, J. 2020. Is critical human geography
research replicable? Annals of the American
Association of Geographers. doi: 10.1080/24694452.
2020.1806025.

Waters, N. 2020. Motivations and methods for replication
in geography: Working with data “streams.” Annals of
the American Association of Geographers. doi: 10.1080/
24694452.2020.1806027.

Wilkinson, M. D., M. Dumontier, I. J. J. Aalbersberg, G.
Appleton, M. Axton, A. Baak, N. Blomberg, J-W.
Boiten, L. Bonino da Silva Santos, P. E. Bourne,
et al. 2016. The FAIR guiding principles for scientific
data management and stewardship. Scientific Data
3:160018. doi: 10.1038/sdata.2016.18.

Wilson, J. P., and P. A. Burrough. 1999. Dynamic model-
ing, geostatistics, and fuzzy classification: New
sneakers for a new geography? Annals of the
Association of American Geographers 89 (4):736–46.
doi: 10.1111/0004-5608.00173.

Wilson, J. P., K. Butler, S. Gao, W. Li, and D. J. Wright.
2020. The replicability and reproducibility of the GIS
software and algorithms used in environmental appli-
cations. Annals of the American Association of
Geographers. doi: 10.1080/24694452.2020.1806026.

Xie, Y. 2015. Dynamic documents with R and knitr. 2nd ed.
Boca Raton, FL: CRC.

DANIEL N€UST is Researcher at the Institute for
Geoinformatics, University of M€unster, 48149 M€unster,
Germany. E-mail: daniel.nuest@uni-muenster.de. He
develops tools for creation and execution of research
compendia in geography and geosciences in the project
Opening Reproducible Research (o2r, https://o2r.info).

EDZER PEBESMA is Professor of Geoinformatics at
University of M€unster, 48149 M€unster, Germany.
E-mail: edzer.pebesma@uni-muenster.de. He is developer
and maintainer of several popular R packages for han-
dling and analyzing spatial and spatiotemporal data (sp,
spacetime, gstat, sf).

Practical Reproducibility in Geography and Geosciences 11

167

11 Reproducible researcH and GIScience:
An evaluation using AGILE conference
papers

Authors & contribution Daniel Nüst (40%), Carlos Granell, BarbaraHofer, Markus Konkol,
Frank O. Ostermann, Rusne Sileryte, Valentina Cerutti

Venue PeerJ (SNIP 2020: 1.04) 10.7717/peerj.5072

Date 07/2018

Licence Creative Commons Attribution (CC BY 4.0)

Repository https://github.com/nuest/reproducible-research-and-giscience

ERC https://o2r.uni-muenster.de/erc/F9Gxs

169

https://www.journalindicators.com/indicators/journal/21100239256
https://doi.org/10.7717/peerj.5072
https://github.com/nuest/reproducible-research-and-giscience
https://o2r.uni-muenster.de/erc/F9Gxs

Submitted 13 March 2018
Accepted 4 June 2018
Published 13 July 2018

Corresponding author
Daniel Nüst,
daniel.nuest@uni-muenster.de

Academic editor
Nicolas Rougier

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj.5072

Copyright
2018 Nüst et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Reproducible research and GIScience:
an evaluation using AGILE conference
papers

Daniel Nüst1, Carlos Granell2, Barbara Hofer3, Markus Konkol1,
Frank O. Ostermann4, Rusne Sileryte5 and Valentina Cerutti4

1 Institute for Geoinformatics, University of Münster, Münster, Germany
2 Institute of New Imaging Technologies, Universitat Jaume I de Castellón, Castellón, Spain
3 Interfaculty Department of Geoinformatics - Z_GIS, University of Salzburg, Salzburg, Austria
4 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede,
The Netherlands

5 Faculty of Architecture and the Built Environment, Delft University of Technology, Delft, The Netherlands

ABSTRACT

The demand for reproducible research is on the rise in disciplines concerned with

data analysis and computational methods. Therefore, we reviewed current recommen-

dations for reproducible research and translated them into criteria for assessing the

reproducibility of articles in the field of geographic information science (GIScience).

Using this criteria, we assessed a sample of GIScience studies from the Association

of Geographic Information Laboratories in Europe (AGILE) conference series, and

we collected feedback about the assessment from the study authors. Results from the

author feedback indicate that although authors support the concept of performing

reproducible research, the incentives for doing this in practice are too small. Therefore,

we propose concrete actions for individual researchers and the GIScience conference

series to improve transparency and reproducibility. For example, to support researchers

in producing reproducible work, the GIScience conference series could offer awards

and paper badges, provide author guidelines for computational research, and publish

articles in Open Access formats.

Subjects Science Policy, Computational Science, Data Science, Spatial and Geographic

Information Science

Keywords GIScience, Open science, Reproducible research, Data science, AGILE, Reproducible

conference publications, Open access

INTRODUCTION

A ‘‘reproducibility crisis’’ has been observed and discussed in several scientific disciplines

such as economics (Ioannidis, Stanley & Doucouliagos, 2017), medical chemistry (Baker,

2017), neuroscience (Button et al., 2013), and for scientific studies in general, across various

disciplines (Ioannidis, 2005). The lack of reproducibility in scientific studies stems from

researchers facing challenges in understanding and re-creating others’ results, a situation

that is common in data-driven and algorithm-based research. However, even though

algorithms are becoming more relevant in GIScience, a reproducibility crisis has not yet

been observed in this field. In GIScience, failures to reproduce are not yet a topic of

How to cite this article Nüst D, Granell C, Hofer B, Konkol M, Ostermann FO, Sileryte R, Cerutti V. 2018. Reproducible research and
GIScience: an evaluation using AGILE conference papers. PeerJ 6:e5072 http://doi.org/10.7717/peerj.5072

170

broad and common interest, but this field should be working to prevent a crisis instead of

reacting to one. Given this motivation, we aim to adapt the observations and challenges

of reproducible research from other disciplines to the GIScience community, and then

use these adapted criteria to assess the reproducibility of research produced by members

of this field and presented at a conference for the Association of Geographic Information

Laboratories in Europe (AGILE), which has organised annual conferences on GIScience

topics since 1998 (https://agile-online.org/index.php/conference/past-agile-conferences;

all links last accessed Nov 23 2017). The conference series’s broad topical scope and its

notoriety in the GIScience community make it a reasonable starting point to investigate the

level of reproducibility in GIScience research. This publication continues a collaboration

started at the AGILE 2017 pre-conference workshop ‘‘Reproducible Geosciences Discussion

Forum’’ (http://o2r.info/reproducible-agile/2017/).

In this work, we first review papers from other disciplines, which provide

recommendations on how to make research more transparent and reproducible. This

literature study provides the general criteria we used to systematically evaluate a sample of

32 AGILE conference papers from the last eight years. From this evaluation and the lessons

learned by others, we formulate recommendations for the AGILE community, ranging from

individual researchers’ practises to practises to be carried out by conference organisations.

Because of its international reach, broad range of topics, and long-sustained community, we

argue that AGILE is in a unique position to take a leading role to promote reproducibility in

GIScience. The following research questions (RQs) structure the remainder of this article:

RQ 1 What are general criteria for reproducible research?

RQ 2 What are key criteria for reproducible research in GIScience?

RQ 3 How do AGILE conference papers meet these reproducibility criteria?

RQ 4 What strategies could improve reproducibility in AGILE contributions and GIScience

in general?

‘Related work’ provides references targeting RQ 1, which are detailed further in

‘Assessment of Reproducibility’ to address RQ 2. The results of applying the criteria

(‘Results’) answer RQ 3, and the discussion (‘Discussion’) responds to RQ 4.

RELATED WORK

Reproducible research is a frequently discussed topic in editorials and opinion articles

in high-impact journals (cf. ‘Recommendations and suggestions in literature’). Extensive

studies on the state of reproducibility have been conducted in some domains, e.g., in

computer systems research (Collberg & Proebsting, 2016, see also project website

http://reproducibility.cs.arizona.edu/) or bioinformatics (Hothorn & Leisch, 2011). For the

field of geoscience research, some discussion of reproducibility has happened sporadically

for quantitative geography (Brunsdon, 2016), cartography (Giraud & Lambert, 2017)

and volunteered geographic information (VGI) (Ostermann & Granell, 2017), but no

comprehensive study of reproducibility in the GIScience domain has been conducted.

Even though recent studies highlight an increased awareness of and willingness

for open research, they also draw attention to persistent issues and perceived risks

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 2/23

171

associated with data sharing and publication, such as the lack of rewards and the

risk of losing recognition in a competitive academic environment (Tenopir et al.,

2011; Ioannidis, 2014). Beyond individual concerns, there are systematic impediments.

Some studies have mentioned that reproducible research is not in the individual

researcher’s domain but instead is a multi-actor endeavour, which requires a

collective mind shift within the scientific community (Stodden et al., 2016; McNutt,

2014; Ioannidis, 2014). Funding agencies, research institutions, publishers, journals,

and conferences are all responsible for promoting reproducible research practises.

Existing examples (journals welcoming reproducible papers: Information Systems

(https://www.elsevier.com/journals/information-systems/0306-4379), Vadose Zone

Journal (https://dl.sciencesocieties.org/publications/vzj/articles/14/10/vzj2015.06.0088),

GigaScience (https://academic.oup.com/gigascience/pages/instructions_to_authors), JASA

(http://www.sph.umn.edu/news/wolfson-named-reproducibility-editor-asa-statistics-

journal/)) are remarkable, yet in general they are scarce and testimonial.

Another hindrance to reproducible research is that, given the distinct nature and

variety of research practises, the term reproducibility has been used with varying

meanings and may stand for repeatability, robustness, reliability or generalisability of

scientific results (Editorial, 2016). There has been some confusion about contradictory

meanings in the literature (see for example Mark Liberman’s ‘‘Replicability vs.

reproducibility’’ (http://languagelog.ldc.upenn.edu/nll/?p=21956)). Wikipedia’s definition

(https://en.wikipedia.org/wiki/Reproducibility) is widely used to distinguish both terms:

Reproducibility is the ability to get the same research results using the raw data and

computer programs provided by the researchers. A related concept is replicability,

meaning the ability to independently achieve similar conclusions when differences in

sampling, research procedures and data analysis methods may exist.

Leek & Peng (2015) similarly define reproducibility as the ability to compute exactly the

same results of a study based on original input data and details of the analysis workflow.

They refer to replicability as obtaining similar conclusions about a research question

derived from an independent study or experiment. A Nature Editorial (2016) defines

reproducibility as achieved when ‘‘another scientist using the same methods gets similar

results and can draw the same conclusions’’. Stodden et al. (2016, p. 1240) base their

reproducibility enhancement principles on ‘‘the ability to rerun the same computational

steps on the same data the original authors used’’. While most statements in the literature

show that researchers have a common understanding of what these two concepts mean,

the interpretation and application of these concepts by the scientific communities is

still inconsistent and leads to different methods and conventions for disseminating

scientific work. In the field of GIScience, Ostermann & Granell (2017, p. 226) argue

that ‘‘a reproduction is always an exact copy or duplicate, with exactly the same features

and scale, while a replication resembles the original but allows for variations in scale for

example’’. Hence, reproducibility is exact whereas replicability means confirming the

original conclusions, though not necessarily with the same input data, methods, or results.

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 3/23

172

1Full number of short papers cannot be

derived automatically, (cf. Nüst, 2018).

2Using R Markdown, see http://

rmarkdown.rstudio.com/.

MATERIALS & METHODS

The paper corpus

We consider the AGILE conference series publications to be a representative sample

of GIScience research because of the conferences’ broad topical scope. Since 2007, the

AGILE conference has had a full paper track (cf. Pundt & Toppen, 2017) and a short paper

track with blind peer review. The latter is published for free on the AGILE website.

Legal issues (full paper copyrights lie with the publisher Springer, see https://agile-

online.org/index.php/conference/springer-series) and practical considerations (assessment

of reproducibility is a manual time-consuming process; old publications introduce bias

because of software unavailability) led us to choose to apply our evaluation only to nominees

for the ‘‘best full and short paper’’ awards for 2010, and 2012 to 2017 (no records for a best

paper award could be found for 2011). Typically, there are three full paper and two short

paper candidates per year (https://agile-online.org/index.php/conference/proceedings).

Exceptions are 2013 with only two full papers and 2010 without any short papers. The

corpus contains 32 documents: 20 full papers (7.9% of 253 full papers since 2007) and 12

short papers1.

An exploratory text analysis of the paper corpus investigated the occurrence of keywords

related to reproducibility, data, and software. The code is published as an executable

document2 (cf. Nüst, 2018). Most frequent terms mentioned are illustrated by Fig. 1.

Table 1 shows keyword occurrence per paper and in the entire corpus (bottom row

‘‘Total‘‘). Keyword identification uses word stems, e.g., reproduc includes ‘‘reproducible’’,

‘‘reproduce’’, and ‘‘reproduction’’ (see Nüst (2018) for details). While this matches

common and established (technical) terms, it might not capture all phrases an author

could use to describe reproducibility-related aspects of the work. Putting these corner

cases aside, the numbers are clear enough to draw the following conclusions. Few papers

mention reproducibility, some mention code and software, and many mention processes,

algorithms, and data. This points to data and analysis being generally discussed in the

publications, while being able to recreate the data and analyses is not deliberated.

Assessment of reproducibility
Recommendations and suggestions in literature

Scientists from various disciplines suggest guidelines for open and reproducible research

considering the specific characteristics of their field, e.g., Sandve et al. (2013) for life

sciences, McNutt (2014) for field sciences, and Gil et al. (2016) for the geoscience paper of

the future. Our goal was to first identify common recommendations that are applicable

across research fields, including GIScience.

Suggested guidelines found in the reproducibility-related papers we investigated were

categorised according to four aspects: data concerns all inputs; methods cover everything

on the analysis of data, e.g., algorithms, parameters, and source code; results include

(intermediate) data and parameters as well as outcomes such as statistics, maps, figures, or

new datasets; and structure considers the organisation and integration of the other aspects.

While some of the publications focus on specific aspects such as data (Gewin, 2016), code

(Stodden & Miguez, 2014), workflow semantics (Scheider, Ostermann & Adams, 2017), and

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 4/23

173

Figure 1 Two illustrations of the test corpus papers: word cloud, scaled and coloured by number of oc-

currence of words with at least 100 occurrences (96 unique words) (A); top words sorted by overall oc-

currence and number of papers including the word at least once (B).

Full-size DOI: 10.7717/peerj.5072/fig-1

results (Sandve et al., 2013), others provide an all-embracing set of research instructions

(Stodden et al., 2016; Nosek et al., 2015; Gil et al., 2016).

Data. A recurring aspect we encountered is making data accessible for other researchers

(cf. Reichman, Jones & Schildhauer, 2011), ideally as archived assets having a Digital Object

Identifier (DOI) and supplemented by structured metadata (Gewin, 2016). Stodden et

al. (2016) consider legal aspects, such as sharing data publicly under an open license

to clarify reusability. Further recommendations refer to modifying scientific practises,

such as citation standards to ensure proper acknowledgement (Nosek et al., 2015),

fostering data transparency (McNutt, 2014), and using open data formats to mitigate

potentially disappearing proprietary software (Gewin, 2016). According to Reichman, Jones

& Schildhauer (2011), journals and funders should include data sharing in their guidelines.

Methods. A key requirement (Sandve et al., 2013) concerning methods is sharing used or

developed software, where software should be published using persistent links (Stodden et

al., 2016; Gil et al., 2016) and descriptive metadata (Reichman, Jones & Schildhauer, 2011).

Similar to data, important concerns for software are open licensing (Barba, 2016) and

proper credits (Stodden et al., 2016). Researchers can accomplish software transparency

by using version control systems (cf. Sandve et al., 2013), and transparency mandates

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 5/23

174

Table 1 Reproducibility-related keywords in the corpus, ordered by sum of matches per paper. For full references of the corpus papers see

Supplemental Material.

Citation Reproduc. Replic. Repeatab. Code Software Algorithm(s) (pre)process. Data Result(s) All

Foerster et al. (2012) 0 0 0 2 3 11 140 129 41 326

Wiemann & Bernard (2014) 0 0 0 0 0 0 20 98 3 123

Mazimpaka & Timpf (2015) 0 0 0 3 0 4 4 97 10 118

Steuer et al. (2015) 0 0 0 0 0 25 12 64 17 118

Schäffer et al. (2010) 0 0 0 0 10 1 26 65 6 108

Rosser et al. (2016) 0 0 0 0 2 1 42 51 6 105

Gröchening et al. (2014) 0 0 0 0 0 3 2 69 27 101

Almer et al. (2016) 0 0 0 1 1 1 22 53 22 100

Magalhães et al. (2012) 0 0 0 2 1 20 52 9 1 85

Juhász & Hochmair (2016) 0 0 0 0 1 1 2 55 11 70

Wiemann (2016) 0 0 0 0 3 0 8 55 1 69

Fan et al. (2014) 0 0 0 0 0 3 8 44 12 67

Merki & Laube (2012) 0 0 0 0 0 9 6 40 6 62

Zhu et al. (2017) 2 2 0 2 0 10 7 32 6 61

Kuhn & Ballatore (2015) 0 0 1 2 14 1 5 26 8 58

Soleymani et al. (2014) 1 0 0 0 0 0 4 39 9 56

Fogliaroni & Hobel (2015) 0 0 0 0 0 3 14 30 5 52

Osaragi & Hoshino (2012) 0 0 0 0 0 0 5 36 7 48

Stein & Schlieder (2013) 0 0 0 0 0 0 3 42 3 48

Körner et al. (2010) 0 0 0 0 0 6 5 30 4 45

Knoth et al. (2017) 0 0 0 3 2 1 6 25 7 44

Raubal & Winter (2010) 0 0 0 1 1 1 18 0 13 34

Konkol et al. (2017) 1 0 0 3 1 1 2 4 19 31

Kiefer et al. (2012) 1 0 0 0 2 1 9 10 8 31

Haumann et al. (2017) 0 0 0 0 0 6 8 10 2 26

Josselin et al. (2016) 0 0 0 0 2 1 9 5 8 25

Heinz & Schlieder (2015) 1 0 0 2 1 3 2 14 2 25

Osaragi & Tsuda (2013) 0 0 0 1 1 0 3 16 2 23

Baglatzi & Kuhn (2013) 1 0 0 0 0 0 6 12 3 22

Scheider et al. (2014) 0 0 0 0 1 0 0 13 4 19

Brinkhoff (2017) 0 0 0 0 1 9 2 3 2 17

Schwering et al. (2013) 0 0 0 0 0 4 2 3 5 14

Total 7 2 1 22 47 126 454 1,179 280 2,131

using open source instead of proprietary software (Steiniger & Hay, 2009). Since full

computational reproducibility can depend on exact software versions (Gronenschild et al.,

2012), the computational environment needs to be reported (cf. Stodden et al., 2016; Gil

et al., 2016). Further software-specific recommendations are workflow tracking (Stodden

& Miguez, 2014) and keeping a record of analysis parameters (Gil et al., 2016). Sandve et

al. (2013) suggest avoiding manual data manipulation steps and instead using scripts to

increase transparency in data preprocessing.

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 6/23

175

Results. Sandve et al. (2013) focus on results-related guidelines such as storing

intermediate results and noting seeds if computations include randomness. Journals should

conduct a reproducibility check prior to publication (Stodden et al., 2016) or funding should

be explicitly granted for making research results repeatable (Collberg & Proebsting, 2016).

Finally, Barba (2016) describes the contents and benefits of a ‘‘reproducibility package’’ to

preserve results.

Structure. While the papers discussed above focus on specific aspects of reproducibility,

an overarching structure for all facets of research can provide important context. But none

of the suggestions for packaging workflows are widely established, for example Gentleman

& Lang (2007) use programming language packaging mechanisms, Bechhofer et al. (2013)

Linked Data, or Nüst et al. (2017) nested containers.

Section summary. Most recommendations and suggestions to foster open and

reproducible research address data and methods. Particularly, methods cover a broad

range of aspects including recommendations on data preprocessing, the actual analysis,

and the computational environment. Results receive less attention, possibly because they

are strongly connected with other aspects. While most of the recommendations address

authors, only few target journals and research institutions.

Definition and criteria

This paper focuses on reproducibility in the context of conference publications and adopts

the described consensus (see ‘Related work’) for the following definition.

A reproducible paper ensures a reviewer or reader can recreate the computational

workflow of a study or experiment, including the prerequisite knowledge and the

computational environment. The former implies the scientific argument to be

understandable and sound. The latter requires a detailed description of used software

and data, and both being openly available.

We build on the recommendations from ‘Recommendations and suggestions in

literature’ and differentiate data, methods, and results as separate dimensions of

reproducibility. We conceptualised each reproducibility dimension as a criterion, and

for each criterion, we developed levels of attained reproducibility. In order to increase

reproducibility of this study and improve inter-rater agreement, we created a corresponding

rubric that explains the requirements. Together, the three criteria and their levels address

specifics of GIScience research and allow for a fine-grained assessment of reproducibility.

However, early during the evaluation process, it became clear that the assessed corpus

papers showed great variation in data, methods, and type of results. For example, data

used during the reported studies varies from spatial data to qualitative results from

surveys. Methods are particularly diverse, ranging from the application of spatial analysis

operations to statistical approaches or simulations. Results include maps, formulas, models

or diagrams. Therefore, we decided to split the methods criterion into three sub-criteria

addressing the distinct phases and respective software tools: data preprocessing, analysis

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 7/23

176

3Cf. The Open Definition, https://

opendefinition.org/: ‘‘Open data and

content can be freely used, modified, and

shared by anyone for any purpose’’.

methods and workflows, and computational environment. Following this change, we

re-evaluated already assessed corpus papers.

Figure 2 shows the reproducibility criteria for each of the categories Data,Methods, and

Results, and their levels. The levels are either not applicable (NA) or range from no (value

of 0) to full (3) reproducibility. The level 0 unavailable means that there is insufficient

documentation in the paper, or the information is only available upon request (since

this cannot be guaranteed and we could not check availability for all studies). The level

1 documented means that there is sufficient information to recreate at least parts of the

study, but no concrete data or code or models. Level 2 available means that required data

and code is provided. Finally, level 3 available, open and permanent, adds the requirement

of unrestricted and sustainable access, e.g., through permanent links to open repositories

containing data, relevant methods and workflows (such as software versions, hardware

specifications, scripts), and all results (including intermediary ones or those not discussed

in detail in the study). TheMethods criteria do not include the ‘‘permanent’’ aspect, because

there is no suitable single identifier to define the complex properties of code, libraries and

system environment, although a DOI may be used to collectively identify all these items

as source or binary files. Licensing is important for reproducibility, because only a clear

license, which ideally is well-known and established, allows use of copyrighted content.

So in this sense ‘‘open’’ means ‘‘open enough for reproduction’’, but in practice the used

licenses should be fully open and allow modification and sharing beyond mere access and

use3.

The intermediate levels (1 and 2) allow a differentiated evaluation. For example for

data at level 1, data is not accessible but documented sufficiently, so others can recreate

it; at level 2 data is available yet in a non-persistent way or with a restrictive license. The

requirements are cumulative, meaning that higher levels of reproducibility include lower

levels’ requirements. The reproducibility rubric was developed in iterative discussions

between all raters, using the examined literature on reproducibility as point of reference.

By design, our criteria cannot be applied to conceptual research publications, namely

those without data or code. Their evaluation is covered by an editorial peer review process

(see for example Ferreira et al. (2016) for history and future of peer review), and assessing

the merit of an argument is beyond the scope of this work.

Author feedback on assessment of reproducibility (survey)

To better understand the reasons behind the scores and to give the authors an opportunity

to respond after the reproducibility of their research was assessed, we designed a survey

usingGoogle Forms (https://www.google.com/forms/about/) (see Table 2, cf.Baker (2016a)

for a large scale survey on the topic). The full survey, as it was shown to the participants, is

included in the Supplemental Material.

Along with the survey, authors were provided with the results of our evaluation of their

specific papers, and they were asked to express their agreement or disagreement with the

results. The four main questions of the survey were designed to find out whether authors

considered reproducibility important in the first place, and if so, what prevented them

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 8/23

177

Figure 2 The final reproducible research criteria used for the evaluation. The categories Data,Methods

(sub-categories: preprocessing, method/analysis/processing, and computational environment), and Results

each have four levels ranging from 0 = not reproducible to 3 = fully reproducible.

Full-size DOI: 10.7717/peerj.5072/fig-2

from fully achieving it. Finally, the authors were asked to provide their own opinion and

suggestions for the AGILE community to encourage publishing fully reproducible papers.

RESULTS

Assessment of reproducibility

To address RQ 3, we reviewed the papers in the corpus with the introduced criteria. Our

objective in publishing the full evaluation results is not to criticise or rank individual

papers, but to identify the current overall state of reproducibility in GIScience research

in a reproducible manner. The scientific merit of all papers was already proven by their

nomination for the best paper award.

The procedure was as follows: First, we determined a maximum number of papers

for a single evaluator to reach two evaluators per paper. Second, we grouped evaluators

according to their affiliation or research group. Evaluators then chose to review papers

without a conflict of interest on a first come first served basis until two goals were achieved:

the evaluator reached her maximum number of reviews and two evaluators from different

research groups reviewed the paper. For assigning a level of reproducibility, the general

guideline was to apply the lower of two possible levels in cases of doubt, such as partial

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 9/23

178

Table 2 Survey questions (except for paper identification questions; for full questionnaire see Supplemental Material).

Question Possible answers

1. Have you considered the reproducibility of research

published in your nominated paper?

• Yes, it is important to me that my research is fully reproducible

• Yes, I have somewhat considered reproducibility

• No, I was not concerned with it

• Other (please add)

2. Do you agree with our rating of your publication?

Please comment.

Open answer

3a. Please rate how strongly the following circumstances

have hindered you from providing all data, methods and

results used/developed during your research?

• The need to invest more time into the publication

• Lack of knowledge how to include data/methods/results into the publication

• Lack of tools that would help to attach data/methods/results to the publication

• Lack of motivation or incentive

• Legal restrictions

Available ratings:

• Not at all

• Slightly hindered

• Moderately hindered

• Strongly hindered

• Main reason

3b. Please add here if there were any other hindering

circumstances

Open answer

4. What would you suggest to AGILE community to

encourage publishing fully reproducible papers?

Open answer

fulfilment of a criterion or disagreement between the evaluators. All reviewers discussed

disagreements and open questions after an initial round of evaluation comprising one

to three reviews per researcher, and after completing all reviews. Because the assessment

focuses on algorithmic and data-driven research papers, five fully conceptual papers were

not assessed, while 15 partly conceptual ones were included. Notably, the data preprocessing

criterion did not apply to 14 research papers. Table 3 shows the assessment’s results.

Figure 3 shows the distribution of reproducibility levels for each criterion. None of the

papers reach the highest level of reproducibility in any category. Only five papers reach level

2 in the data criterion, which is still the highest number of that level across all categories.

Especially problematic is the high number of papers (19) with level 0 for data, meaning that

the specific data is not only unavailable but it is not re-createable from the information in

the paper. Data preprocessing applies to 18 publications, and the levels are low. Only one

publication has level 2. Concerning the methods and results criteria, 19 out of 32 papers

have level 1 in both, meaning an understandable documentation is provided in the text.

Figure 4 shows that average reproducibility levels are low and do not change significantly

over time, with the mean over all categories being below level 1 for all years. The categories

are ordinal variables, meaning they have an implicit order but an unknown ‘‘distance’’

between them. They can be compared (3 is higher than 2), but absolute differences in

numbers must not be interpreted. Moving one level up from 0 to 1 is not the same as from

2 to 3. Averaging on ordinal variables must be conducted with care: Mode and median

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 10/23

179

Table 3 Reproducibility levels for paper corpus; ‘-’ is category not available. For full references of the corpus papers see Supplemental Material.

Author Short paper Input data Preprocessing Method/analysis/

processing

Computational

environment

Results

Zhu et al. (2017) 0 1 1 1 1

Knoth et al. (2017) 0 – 0 1 1

Konkol et al. (2017) 2 2 1 1 1

Haumann et al. (2017) X 0 1 1 0 1

Brinkhoff (2017) X 0 – 1 0 0

Almer et al. (2016) 0 – 1 1 1

Wiemann (2016) 2 – 1 1 1

Juhász & Hochmair (2016) 0 1 1 0 0

Josselin et al. (2016) X 1 – 0 0 1

Rosser et al. (2016) X 0 – 1 0 0

Kuhn & Ballatore (2015) – – – – –

Mazimpaka & Timpf (2015) 2 1 1 1 1

Steuer et al. (2015) 2 0 1 1 1

Fogliaroni & Hobel (2015) X – – – – –

Heinz & Schlieder (2015) X 0 0 1 1 1

Scheider et al. (2014) 1 1 2 1 1

Gröchening et al. (2014) 2 0 1 0 1

Fan et al. (2014) 0 1 1 0 1

Soleymani et al. (2014) X 0 0 1 0 0

Wiemann & Bernard (2014) X 0 0 1 0 0

Osaragi & Tsuda (2013) 0 1 1 0 1

Baglatzi & Kuhn (2013) – – – – –

Li et al. (2013) X 0 0 1 – 1

Stein & Schlieder (2013) X 0 – 1 0 1

Osaragi & Hoshino (2012) 0 0 1 0 1

Magalhães et al. (2012) 0 0 1 0 0

Foerster et al. (2012) 1 – 1 1 1

Merki & Laube (2012) X 0 – 1 1 1

Kiefer et al. (2012) X 0 1 1 0 1

Raubal & Winter (2010) – – – – –

Schäffer et al. (2010) 0 0 1 1 1

Körner et al. (2010) – – – – –

are mostly seen as acceptable averaging functions for ordinal data, while the mean is seen

inapplicable by some.

We decided not to use median or mode, because they hide all differences between the

categories. The mean should not be applied for a single paper, whereby all categories in

a single paper are averaged, because different evaluation rules would be combined into a

meaningless number. Being aware of these limitations and the small dataset size, we opted

to apply the mean and a statistical summary to categories to compare values between the

different categories, and to compare the two large groups within the paper corpus (full and

short papers).

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 11/23

180

Figure 3 Results of reproducibility assessment across all categories for the assessment of reproducibil-

ity:Data (A),Methodswith sub-categories preprocessing (B), method/analysis/processing (C) and

computational environment (D), and Results (E). The level of reproducibility ranges from 0 (not repro-

ducible) to 3 (fully reproducible); NAs include 5 conceptual papers (all categories are NA).

Full-size DOI: 10.7717/peerj.5072/fig-3

Figure 4 Mean reproducibility levels per category over time; black dotted line connects the mean per

year over all categories (in 2010 only one of three papers could be assessed, reaching level 1 for meth-

ods).

Full-size DOI: 10.7717/peerj.5072/fig-4

Tables 4 and 5 contain summary statistics per criterion and means for full and short

papers. For each criterion, full papers reach higher levels of reproducibility than short

papers (see Table 5).

Author feedback (survey)

The full survey responses are included in this paper’s repository (Nüst, 2018). The survey

was sent to authors via e-mail and was open from 23 October to 24 November 2017. In

case of obsolete e-mail addresses, we searched for updated ones and resent the form. Out

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 12/23

181

Table 4 Statistics of reproducibility levels per criterion.

Input data Preproc. Method/analysis/proc. Comp. env. Results

Min. 0.00 0.00 0.00 0.00 0.00

Median 0.00 0.50 1.00 0.00 1.00

Mean 0.48 0.56 0.96 0.46 0.78

Max. 2.00 2.00 2.00 1.00 1.00

NA’s 5.00 14.00 5.00 6.00 5.00

Table 5 Mean levels per criterion for full and short papers.

Input data preproc. Method/analysis/proc. Comp. env. Results

Full papers 0.75 0.67 1.00 0.62 0.88

Short papers 0.09 0.33 0.91 0.20 0.64

of a total of 82 authors, 22 filled in the survey, resulting in responses for 17 papers, because

six participants did not give consent to use their answers, two authors participated twice

for different papers, and some papers had more than one individual response.

Authors were asked to comment on whether they agreed or disagreed with our

evaluations of their specific paper. Seven responses fully agreed with the evaluation,

five agreed partly, two expressed disagreement, and one did not answer the question.

Most disagreements addressed the definition of criteria. Multiple authors argued that such

requirements should not be applicable for short papers, and that specific data is not always

necessary for reproducibility. Others disagreed about treating ‘‘availability upon request’’ as

‘‘unavailable’’. One argued that OpenStreetMap data is by default ‘‘open and permanent’’,

but for our criteria citing OpenStreetMap lacked direct links to specific versioned subsets

of data.

The answers suggest that authors are generally aware of the need for reproducibility

and in principle know how to improve it in their work. However, many do not consider

it a priority, saying that they did not incorporate reproducibility because of a lack of

motivation (eight respondents) or the required extra effort required, which they say is

disproportionately large in comparison to the added value.

According to the survey results, reproducibility was important to more than half of the

respondents (see Fig. 5). Only two respondents claimed they were not at all concerned

about it (both short papers). Further comments revealed that some authors consider

short papers as introductions of new concepts and generally too short for reproducibility

concerns. The paper corpus supports this opinion because short papers reach overall lower

reproducibility levels.

In contrast, we argue that transparency should not depend on the publication type but is

a feature of the entire scientific process. Especially at early stages, the potential for external

review and collaboration can be beneficial for authors. Further, putting supplementary

materials in online repositories addresses the problem of word count limits (for full and

short papers), which many authors struggle with.

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 13/23

182

Figure 5 Author survey results on the importance of reproducibility.

Full-size DOI: 10.7717/peerj.5072/fig-5

To identify barriers to reproducibility, the authors were asked to rate how strongly five

predefined barriers (Table 2) impacted their work’s reproducibility. They could also add

their own reasons, for which they mentioned paper length restrictions and the need for

additional financial resources. Table 6 shows that the most frequently mentioned reasons

were legal restrictions and lack of time, where only one respondent indicated that these

factors played no role. Although lack of knowledge on how to include data, methods

and results was not considered by many as a barrier, several respondents noted a lack of

supporting tools as a main impediment for reproducibility.

Respondents also shared their ideas for how AGILE could encourage reproducibility

in its publications. Four suggested Open Access publishing and asked for solutions to

deal with sensitive data. A few suggested encouraging and promoting collaboration across

research institutes and countries to mitigate ephemeral storage and organisations. Some

respondents proposed that an award could be given for reproducible papers, reproducibility

could be required for the best paper nomination, or conference fees could be waived for

reproducible papers. In summary, almost all authors agreed on the importance of the topic

and its relevance for AGILE.

DISCUSSION

A critical review of this paper’s reproducibility

We acknowledge this paper has its own shortcomings with respect to reproducibility. The

data, code, and a description of the runtime environment are transparently published on

GitHub (https://github.com/nuest/reproducible-research-and-giscience) and deposited

in an open repository under the DOI https://doi.org/10.5281/zenodo.1227260 (Nüst,

2018). The repository comprises an anonymised table with the survey results and a

literate programming document, which transparently combines data preprocessing,

analysis, and visualisations. The runtime environment description is based on Docker

(https://en.wikipedia.org/wiki/Docker_(software)) and allows readers to easily open an

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 14/23

183

Table 6 Hindering circumstances for reproducibility for each survey response (n= 17) sorted by barrier type for the category with most ‘‘Main

reason’’ occurences; each line is one response and background colour corresponds to cell text.

Legal restrictions Lack of time Lack of tools Lack of knowledge Lack of incentive

Main reason Strongly hindered Not at all Not at all Strongly hindered

Main reason Not at all Not at all Not at all Moderately hindered

Main reason Slightly hindered Strongly hindered Moderately hindered Strongly hindered

Main reason Not at all Slightly hindered Not at all Not at all

Strongly hindered Strongly hindered Strongly hindered Moderately hindered Strongly hindered

Moderately hindered Main reason Not at all Not at all Not at all

Slightly hindered Moderately hindered Slightly hindered Slightly hindered Moderately hindered

Slightly hindered Not at all Main reason Strongly hindered Not at all

Not at all Moderately hindered Not at all Moderately hindered Not at all

Not at all Strongly hindered Strongly hindered Strongly hindered Slightly hindered

Not at all Moderately hindered Not at all Not at all Not at all

Not at all Slightly hindered Main reason Not at all Strongly hindered

Not at all Main reason Not at all Not at all Not at all

Not at all Main reason Not at all Not at all Not at all

Not at all Moderately hindered Moderately hindered Not at all Strongly hindered

Not at all Not at all Not at all Not at all Not at all

Not at all Slightly hindered Not at all Slightly hindered Not at all

interactive analysis environment in their browser based on Binder (http://mybinder.org/,

(cf. Holdgraf, 2017). The working link to launch the binder is https://mybinder.org/

v2/gh/ nuest/reproducible-research-and-giscience/6 and the file README.md provides

instructions on the usage. The input data (i.e., the paper corpus) for the text analysis

cannot be re-published due to copyright restrictions. Our sample is biased (although

probably positively), as we only considered award nominees. Access to all papers would

have allowed a random sample from the population. Regarding the method, the created

criteria and how they were assigned by humans cannot honour all details and variety of

individual research contributions and is inherently subjective. We tried to mitigate this

by applying a ‘‘four eyes’’ principle, and transparently sharing internal comments and

discussion on the matter in the code repository. Using our own classification, we critically

assign ourselves level 0 for data and level 3 for methods and results.

Improving day-to-day research in GIScience

Our evaluation clearly identifies issues of reproducibility in GIScience. Many of the

evaluated papers use data and computer-based analysis. All papers were nominated for the

best paper award within a double-blind peer review and thus represent the upper end of

the quality spectrum at an established conference. Yet, overall reproducibility is low and no

positive trend is perceivable. It seems that current practises in scientific publications lack

full access to data and code. Instead, only methods and results are documented in writing.

In order to significantly improve the reproducibility of research, theremust be changes in

educational curricula, lab processes, universities, journal publishing, and funding agencies

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 15/23

184

4Force11.org. Guiding principles for

findable, accessible, interoperable and

re-usable data publishing: version B1.0.

https://www.force11.org/node/6062

(Reproducible Research, 2010; McKiernan, 2017) as well as reward mechanisms that go

beyond paper citations (cf. term ‘‘altmetrics’’ in Priem et al., 2010). This is a major and

long-term endeavour. Here, we focus on recommendations and suggestions for individual

researchers and a specific organisation: AGILE. A snowball effect may lead to a change

in practises in the GIScience community. The remainder of this paper addresses RQ 4 by

formulating suggestions to researchers and the AGILE conference organisers.

Suggestions to authors

Regarding habits and workflows, the Carpentries (the union (http://www.datacarpentry.

org/blog/merger/) of Data Carpentry (Teal et al., 2015) and Software Carpentry (Wilson,

2006)) offer lessons on tools to support research, such as programming and data

management, across disciplines. Further resources are available from programming

language and software communities, research domains, and online universities. Often

these resources are available for free because the software is Free and Open Source Software

(FOSS) and driven by a mixed community of users and developers. Ultimately, proprietary

software is a deal-breaker for reproducibility (cf. Ince, Hatton & Graham-Cumming, 2012;

Baker, 2016b). OSGeo-Live (https://live.osgeo.org/) provides a simple environment to test

open alternatives from the geospatial domain, and several websites offer help in finding

FOSS comparable to commercial products (e.g., https://opensource.com/alternatives or

https://alternativeto.net). But, authors can do more than just use open software to improve

reproducibility. It is not only about the software. They can engage in simple tasks such

as ‘‘naming things’’ sensibly (https://speakerdeck.com/jennybc/how-to-name-files by

Jennifer Bryan), they can be realistic by not striving for perfection but following ‘‘good

enough practices in scientific computing’’ (Wilson et al., 2017), they can explore ‘‘selfish

reasons to work reproducibly’’ (Markowetz, 2015), and they can follow FAIR4 guidelines

with ‘‘structuring supplemental material’’ (Greenbaum et al., 2017).

Recommendations to conferences in GIScience and organisations
like AGILE

What can conferences and scientific associations do to encourage reproducibility? A crucial

step in improving reproducibility of GIScience research is acknowledging the important

role organisations like AGILE can play in adopting reproducible research practises, which

can be built upon a large body of guidelines, documentation and software. In the remainder

of this section we propose concrete actions for organisations, using AGILE as the leading

example.

AGILE could show that it recognizes and supports reproducibility by offering an

award for reproducible papers. This is already done by other communities, e.g., the ACM

SIGMOD 2017 Most Reproducible Paper Award (http://db-reproducibility.seas.harvard.

edu/ and https://sigmod.org/2017-reproducibility-award/). At AGILE, when reviewers

suggest submissions to be nominated for best (short) papers, , they could also have these

papers briefly checked for reproducibility. This check could be performed by a newScientific

Reproducibility Committee led by a Reproducibility Chair, working alongside the existing

committees and their chairs. Committee membership would be publicly recognised. The

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 16/23

185

5E.g., OSI compliant for code and Open

Definition compliant for data, see

http://licenses.opendefinition.org/.

6See IEEE’s CiSE magazine’s Reproducible

Research Track https://www.computer.org/

cise/2017/07/26/reproducible-research-

track-call-for-papers/, and Elsevier

journal Information Systems’ section

for invited reproducibility papers, https:

//www.elsevier.com/journals/information-

systems/0306-4379/guide-for-authors.

7Beside the incumbents Figshare (https:

//figshare.com/), Open Science Framework

(OSF) (https://osf.io/, community-

driven) and Zenodo (https://zenodo.org/,

potentially preferable given AGILE’s

origin because it is funded by EU), a

large number of Open Access repositories

exists, see http://roar.eprints.org/ and

http://opendoar.org/, including platforms

by publishers, e.g., Springer (https:

//www.springer.com/gp/open-access),

or independent organisations, e.g., LIPIcs

proceedings (https://www.dagstuhl.de/en/

publications/lipics)

‘‘most reproducible paper’’ could be prominently presented in the conference’s closing

session.

Kidwell et al. (2016) demonstrate that open data badges have had a positive effect

on actual publishing of data in the journal Psychological Science, which uses badges and

corresponding criteria from the Center for Open Science (https://osf.io/tvyxz/wiki/home/)

(COS). Further examples are the ‘‘kite marks’’ used by the journal Biostatistics (Peng, 2011),

the common standards and terms for artifacts used by the Association for Computing

Machinery’s (ACM) (https://www.acm.org/publications/policies/artifact-review-badging),

and the Graphics Replicability Stamp Initiative (GRSI) (http://www.replicabilitystamp.

org/). While AGILE could invent its own badges, re-using existing approaches has practical

advantages (no need to design new badges), organisational advantages (no need to reinvent

criteria), and marketing advantages (higher memorability). Author guidelines would

include instructions on how to receive badges for a submission. The evaluation of badge

criteria would be integrated in the review and could inform the reproducible paper award.

Author guidelines are the essential place to set the foundation for a reproducible

conference (cf. SIGMOD 2018 CFP, https://sigmod2018.org/calls_papers_sigmod_

research.shtml). Independently of advertising awards and badges, author guidelines should

include clear guidelines on when, how, and where to publish supplemental material (data,

code). Author guidelines for computational research must make authors aware to highlight

reproducibility-related information for reviewers and readers. These guidelines should

contain practical advice, such as code and data licenses5, and instructions on how to work

reproducibly, such as by providing a space for sharing tools and data, which is the most

popular suggestion from the survey (seven respondents).

While the established peer-review process works well for conceptual papers, a special

track or submission type6 could accommodate submissions focussing on reproducibility

without an original scientific contribution and an adapted process (e.g., public peer review).

Such publications can include different authors, e.g., technical staff, or even reviewers as

practised by Elsevier’s Information Systems journal. Publications in a special track can also

mitigate limitations on research paper lengths. Unfortunately, they can also convey the

counterproductive message of reproducibility being cumbersome and uncommon.

Submissions through this special track as well as the regular conference proceedings

should be published asOpen Access (see https://open-access.net/DE-EN/information-on-

open-access/open-access-strategies/) content in the future. It might even be possible to re-

publish short papers and abstracts of previous conferences after solving juridical concerns

(e.g., if author consent is required). To do this, AGILE could utilise existing repositories or

operate its own, where using third party repositories7 for supplements would reduce the

burden on theAGILEorganisation. Choosingone repository allows for collecting all AGILE

submissions under one tag or community (cf. http://help.osf.io/m/sharing/l/524053-tags

and https://zenodo.org/communities/). An AGILE-specific repository would allow more

control, but would require more work and might have lower visibility, since the large

repositories are well indexed by search engines. Both approaches would support a double-

blind review by providing anonymous view-only copies of supplemental material (see

http://help.osf.io/m/links_forks/l/524049-create-a-view-only-link-for-a-project).

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 17/23

186

We see AGILE, carried by its member labs and mission (https://agile-online.org/index.

php/about-agile), as being in a unique position among GIScience conferences to establish

a common understanding and practise of reproducible research. Firstly, member labs

can influence education, especially at the graduate level, and ideally collaborate on open

educational material. Completing a Ph.D. in an AGILE member lab and participating in

AGILE conferences should qualify early career scientists to publish and review reproducible

scholarly works. Secondly, the conference can take a leading role in setting up newnorms for

conference review and publication but at the same time cooperate with other conferences

(e.g., ACM SIGMOD). At first AGILE would encourage but eventually demand the highest

level of reproducibility for all submissions. This process certainly will take several years to

complete.

CONCLUSIONS

What skills related to reproducibility are desirable for authors at GIScience conferences in

2028? Predicting 10 years ahead might not be scientific, but it allows for formulating

a vision to conclude this work. We assume that in 10 years, hardly any paper will not

utilise digital methods, such as software for analysis, interactive visualisations, or open

data. Ever more academics will face competitive selection processes, where quality of

research will be measured by its transparency and novelty. To achieve novelty in a setting

where all research is saved, findable and potentially interpreted by artificial intelligence

(Jones, 2016), a new contribution must be traceable. Thus, the trend towards Open

Science will be reinforced until it is standard practise to use and publish open source

code and open data as well as to incorporate alternative metrics beyond citations. As

of now, AGILE is not ready for such research. It has identifiers (DOIs) only for full

publications and lacks open licenses for posters and (short) papers. Statements on

preprints (publication before submission) and postprints (‘‘green’’ Open Access, see

https://open-access.net/DE-EN/information-on-open-access/open-access-strategies/) are

missing.

Researchers, conference organisers, and programme committees will have to leave

their comfort zone and change the way they work. Also, in order to overcome old habits,

they will have to immediately see the benefits of the new ways (Wilson et al., 2017). The

evidence for benefits of Open Science are strong (McKiernan et al., 2016), but to succeed,

the community must embrace the idea of a reproducible conference. We acknowledge

that fully reproducible GIScience papers are no small step for both authors and reviewers,

but making them the standard would certainly be a giant leap for GIScience conferences.

We are convinced a conference like AGILE can provide the required critical mass and

openness, and we hope the experiences and information provided in this work represent a

sound starting point.

ACKNOWLEDGEMENTS

We thank all authors who participated in the survey and the reviewers for their detailed

comments and valuable suggestions for the manuscript. We would like to thank Celeste R.

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 18/23

187

Brennecka, from the Science Writing Support Service of the University of Münster, for her

editorial support.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

Carlos Granell is funded by the Ramón y Cajal Programme of the Spanish government

(grant number RYC-2014-16913). Daniel Nüst and Markus Konkol are supported by

the project Opening Reproducible Research (https://www.uni-muenster.de/forschungaz/

project/9520) funded by the German Research Foundation (DFG) under project numbers

PE 1632/10-1 respectively KR 3930/3-1. The funders had no role in study design, data

collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Ramón y Cajal Programme of the Spanish government: RYC-2014-16913.

German Research Foundation (DFG): PE 1632/10-1, KR 3930/3-1.

Competing Interests

Barbara Hofer is a member of the AGILE council

(https://agile-online.org/index.php/community/council).

Author Contributions

• Daniel Nüst, Barbara Hofer and Rusne Sileryte analyzed the data, contributed

reagents/materials/analysis tools, prepared figures and/or tables, authored or reviewed

drafts of the paper, approved the final draft.

• Carlos Granell analyzed the data, prepared figures and/or tables, authored or reviewed

drafts of the paper, approved the final draft.

• Markus Konkol and Frank O. Ostermann analyzed the data, authored or reviewed drafts

of the paper, approved the final draft.

• Valentina Cerutti analyzed the data, approved the final draft.

Data Availability

The following information was supplied regarding data availability:

GitHub: https://github.com/nuest/reproducible-research-and-giscience/

Zenodo: https://doi.org/10.5281/zenodo.1227260.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/

peerj.5072#supplemental-information.

REFERENCES

Baker M. 2016a. 1,500 scientists lift the lid on reproducibility. Nature News

533(7604):452–454 DOI 10.1038/533452a.

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 19/23

188

Baker M. 2016b.Why scientists must share their research code. Nature News

DOI 10.1038/nature.2016.20504.

Baker M. 2017. Reproducibility: check your chemistry. Nature 548(7668):485–488

DOI 10.1038/548485a.

Barba LA. 2016. The hard road to reproducibility. Science 354(6308):142–142

DOI 10.1126/science.354.6308.142.

Bechhofer S, Buchan I, De Roure D, Missier P, Ainsworth J, Bhagat J, Couch P, Cruick-

shank D, Delderfield M, Dunlop I, Gamble M, Michaelides D, Owen S, Newman

D, Sufi S, Goble C. 2013.Why linked data is not enough for scientists. Future

Generation Computer Systems 29(2):599–611 DOI 10.1016/j.future.2011.08.004.

Brunsdon C. 2016. Quantitative methods I: reproducible research and quantitative geog-

raphy. Progress in Human Geography 40(5):687–696 DOI 10.1177/0309132515599625.

Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò

MR. 2013. Power failure: why small sample size undermines the reliability of

neuroscience. Nature Reviews Neuroscience 14(5):365–376 DOI 10.1038/nrn3475.

Collberg C, Proebsting TA. 2016. Repeatability in computer systems research. Communi-

cations of the ACM 59(3):62–69 DOI 10.1145/2812803.

Editorial. 2016. Reality check on reproducibility. Nature 533(7604):437

DOI 10.1038/533437a.

Ferreira C, Bastille-Rousseau G, Bennett AM, Ellington EH, Terwissen C, Austin C,

Borlestean A, BoudreauMR, Chan K, Forsythe A, Hossie TJ, Landolt K, Longhi J,

Otis J-A, Peers MJL, Rae J, Seguin J, Watt C,Wehtje M, Murray DL. 2016. The evo-

lution of peer review as a basis for scientific publication: directional selection towards

a robust discipline? Biological Reviews 91(3):597–610 DOI 10.1111/brv.12185.

Gentleman R, Lang DT. 2007. Statistical analyses and reproducible research. Journal of

Computational and Graphical Statistics 16(1):1–23 DOI 10.1198/106186007X178663.

Gewin V. 2016. Data sharing: An open mind on open data. Nature 529(7584):117–119

DOI 10.1038/nj7584-117a.

Gil Y, David CH, Demir I, Essawy BT, Fulweiler RW, Goodall JL, Karlstrom L, Lee

H, Mills HJ, Oh J-H, Pierce SA, Pope A, TzengMW, Villamizar SR, Yu X. 2016.

Toward the geoscience paper of the future: best practices for documenting and

sharing research from data to software to provenance. Earth and Space Science

3(10):388–415 DOI 10.1002/2015EA000136.

Giraud T, Lambert N. 2017. Reproducible cartography. In: Advances in cartography and

GIScience. Lecture notes in geoinformation and cartography. Springer, Cham, 173–183.

GreenbaumD, Rozowsky J, Stodden V, Gerstein M. 2017. Structuring supplemental

materials in support of reproducibility. Genome Biology 18:Article 64

DOI 10.1186/s13059-017-1205-3.

Gronenschild EHBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, Os JV,

Marcelis M. 2012. The effects of freesurfer version, workstation type, and macintosh

operating system version on anatomical volume and cortical thickness measure-

ments. PLOS ONE 7(6):e38234 DOI 10.1371/journal.pone.0038234.

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 20/23

189

Holdgraf C. 2017. Binder 2.0, a Tech Guide. Jupyter Blog. Available at https:// blog.jupyter.

org/binder-2-0-a-tech-guide-2017-fd40515a3a84 (accessed on 24 April 2018).

Hothorn T, Leisch F. 2011. Case studies in reproducibility. Briefings in Bioinformatics

12(3):288–300 DOI 10.1093/bib/bbq084.

Ince DC, Hatton L, Graham-Cumming J. 2012. The case for open computer programs.

Nature 482:485–488 DOI 10.1038/nature10836.

Ioannidis JPA. 2005.Why most published research findings are false. PLOS Medicine

2(8):e124 DOI 10.1371/journal.pmed.0020124.

Ioannidis JPA. 2014.How to make more published research true. PLOS Medicine

11(10):e1001747 DOI 10.1371/journal.pmed.1001747.

Ioannidis JPA, Stanley TD, Doucouliagos H. 2017. The power of bias in economics

research. The Economic Journal 127(605):F236–F265 DOI 10.1111/ecoj.12461.

Jones N. 2016. AI science search engines expand their reach. Nature News

DOI 10.1038/nature.2016.20964.

Kidwell MC, Lazarević LB, Baranski E, Hardwicke TE, Piechowski S, Falkenberg L-

S, Kennett C, Slowik A, Sonnleitner C, Hess-Holden C, Errington TM, Fiedler

S, Nosek BA. 2016. Badges to acknowledge open practices: a simple, low-cost,

effective method for increasing transparency. PLOS Biology 14(5):e1002456

DOI 10.1371/journal.pbio.1002456.

Leek JT, Peng RD. 2015. Opinion: reproducible research can still be wrong: adopting

a prevention approach: Fig. 1. Proceedings of the National Academy of Sciences

112(6):1645–1646 DOI 10.1073/pnas.1421412111.

Markowetz F. 2015. Five selfish reasons to work reproducibly. Genome Biology 16:Article

274 DOI 10.1186/s13059-015-0850-7.

McKiernan EC. 2017. Imagining the ‘‘open’’ university: sharing scholarship to improve

research and education. PLOS Biology 15(10):e1002614

DOI 10.1371/journal.pbio.1002614.

McKiernan EC, Bourne PE, Brown CT, Buck S, Kenall A, Lin J, McDougall D, Nosek

BA, RamK, Soderberg CK, Spies JR, Thaney K, Updegrove A,Woo KH, Yarkoni

T. 2016. Point of view: how open science helps researchers succeed. eLife 5:e16800

DOI 10.7554/eLife.16800.

McNutt M. 2014. Journals unite for reproducibility. Science 346(6210):679–679

DOI 10.1126/science.aaa1724.

Nosek BA, Alter G, Banks GC, BorsboomD, Bowman SD, Breckler SJ, Buck S,

Chambers CD, Chin G, Christensen G, Contestabile M, Dafoe A, Eich E, Freese J,

Glennerster R, Goroff D, Green DP, Hesse B, Humphreys M, Ishiyama J, Karlan

D, Kraut A, Lupia A, Mabry P, Madon T, Malhotra N, Mayo-Wilson E, McNutt M,

Miguel E, Paluck EL, Simonsohn U, Soderberg C, Spellman BA, Turitto J, Vanden-

Bos G, Vazire S, Wagenmakers EJ, Wilson R, Yarkoni T. 2015. Promoting an open

research culture. Science 348(6242):1422–1425 DOI 10.1126/science.aab2374.

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 21/23

190

Nüst D. 2018. Reproducibility Package for ‘‘Reproducible research and GIScience: an

evaluation using AGILE conference papers’’. Available at https://doi.org/10.5281/

zenodo.1227260.

Nüst D, Konkol M, Pebesma E, Kray C, Schutzeichel M, Przibytzin H, Lorenz J.

2017. Opening the publication process with executable research compendia. D-Lib

Magazine 23(1/2) DOI 10.1045/january2017-nuest.

Ostermann FO, Granell C. 2017. Advancing science with VGI: reproducibility and

replicability of recent studies using VGI. Transactions in GIS 21(2):224–237

DOI 10.1111/tgis.12195.

Peng RD. 2011. Reproducible research in computational science. Science 334(6060):

1226–1227 DOI 10.1126/science.1213847.

Priem J, Taraborelli D, Groth P, Neylon C. 2010. altmetrics: a manifesto—altmetrics.org.

Available at http:// altmetrics.org/manifesto/ (accessed on 21 November 2017).

Pundt H, Toppen F. 2017. 20 years of AGILE. In: Bregt A, Sarjakoski T, van Lammeren

R, Rip F, eds. Societal geo-innovation. Cham: Springer International Publishing

351–367 DOI 10.1007/978-3-319-56759-4_20.

Reichman OJ, Jones MB, Schildhauer MP. 2011. Challenges and opportunities of open

data in ecology. Science 331(6018):703–705 DOI 10.1126/science.1197962.

Reproducible Research. 2010. Computing in Science Engineering 12(5):8–13

DOI 10.1109/MCSE.2010.113.

Sandve GK, Nekrutenko A, Taylor J, Hovig E. 2013. Ten simple rules for repro-

ducible computational research. PLOS Computational Biology 9(10):e1003285

DOI 10.1371/journal.pcbi.1003285.

Scheider S, Ostermann FO, Adams B. 2017.Why good data analysts need to be critical

synthesists. Determining the role of semantics in data analysis. Future Generation

Computer Systems 72(Supplement C):11–22 DOI 10.1016/j.future.2017.02.046.

Steiniger S, Hay GJ. 2009. Free and open source geographic information tools for land-

scape ecology. Ecological Informatics 4(4):183–195 DOI 10.1016/j.ecoinf.2009.07.004.

Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, HerouxMA, Ioannidis

JPA, Taufer M. 2016. Enhancing reproducibility for computational methods. Science

354(6317):1240–1241 DOI 10.1126/science.aah6168.

Stodden V, Miguez S. 2014. Best practices for computational science: software infras-

tructure and environments for reproducible and extensible research. Journal of Open

Research Software 2(1):1–6 DOI 10.5334/jors.ay.

Teal TK, Cranston KA, Lapp H,White E, Wilson G, RamK, Pawlik A. 2015. Data

carpentry: workshops to increase data literacy for researchers. International Journal

of Digital Curation 10(1):135–143 DOI 10.2218/ijdc.v10i1.351.

Tenopir C, Allard S, Douglass K, Aydinoglu AU,Wu L, Read E, Manoff M, FrameM.

2011. Data sharing by scientists: practices and perceptions. PLOS ONE 6(6):e21101

DOI 10.1371/journal.pone.0021101.

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 22/23

191

Wilson G. 2006. Software carpentry: getting scientists to write better code by mak-

ing them more productive. Computing in Science Engineering 8(6):66–69

DOI 10.1109/MCSE.2006.122.

Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. 2017. Good enough

practices in scientific computing. PLOS Computational Biology 13(6):e1005510

DOI 10.1371/journal.pcbi.1005510.

Nüst et al. (2018), PeerJ, DOI 10.7717/peerj.5072 23/23

192

12 Reproducible researcH and GIScience:
An evaluation using GIScience
conference papers

Authors & contribution Frank O. Ostermann, Daniel Nüst (25%), Carlos Granell, Bar-
bara Hofer, Markus Konkol

Venue GIScience Conference 2021 (in press); EarthArXiv preprint10.31223/X5ZK5V; in-
cluded text is latest version from repository

Date 03/2021

Licence Creative Commons Attribution (CC BY)

Repository https://github.com/nuest/reproducible-research-at-giscience

ERC https://o2r.uni-muenster.de/erc/zOcwh

193

https://doi.org/10.31223/X5ZK5V
https://github.com/nuest/reproducible-research-at-giscience/
https://github.com/nuest/reproducible-research-at-giscience
https://o2r.uni-muenster.de/erc/zOcwh

Reproducible Research and GIScience: an
evaluation using GIScience conference papers
Frank O. Ostermann 1

Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede,
The Netherlands
f.o.ostermann@utwente.nl

Daniel Nüst
Institute for Geoinformatics, University of Münster, Münster, Germany
daniel.nuest@uni-muenster.de

Carlos Granell
Institute of New Imaging Technologies, Universitat Jaume I de Castellón, Castellón, Spain
carlos.granell@uji.es

Barbara Hofer
Christian Doppler Laboratory GEOHUM and Department of Geoinformatics - Z_GIS,
University of Salzburg, Salzburg, Austria
barbara.hofer@sbg.ac.at

Markus Konkol
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede,
The Netherlands
m.konkol@utwente.nl

Abstract
GIScience conference authors and researchers face the same computational reproducibility challenges
as authors and researchers from other disciplines who use computers to analyse data. Here, to
assess the reproducibility of GIScience research, we apply a rubric for assessing the reproducibility
of 75 conference papers published at the GIScience conference series in the years 2012-2018. Since
the rubric and process were previously applied to the publications of the AGILE conference series,
this paper itself is an attempt to replicate that analysis, however going beyond the previous work
by evaluating and discussing proposed measures to improve reproducibility in the specific context
of the GIScience conference series. The results of the GIScience paper assessment are in line with
previous findings: although descriptions of workflows and the inclusion of the data and software
suffice to explain the presented work, in most published papers they do not allow a third party
to reproduce the results and findings with a reasonable effort. We summarise and adapt previous
recommendations for improving this situation and propose the GIScience community to start a
broad discussion on the reusability, quality, and openness of its research. Further, we critically
reflect on the process of assessing paper reproducibility, and provide suggestions for improving
future assessments. The code and data for this article are published at https://doi.org/10.5281/
zenodo.4032875.

2012 ACM Subject Classification Information systems~Geographic information systems

Keywords and phrases reproducible research, open science, reproducibility, GIScience

Supplement Material The input data for this work are the full texts of GIScience conference pro-
ceedings from the years 2012 to 2018 [35, 7, 20, 34]. The paper assessment results and source
code of figures are published at https://github.com/nuest/reproducible-research-at-giscience and
archived on Zenodo [27]. The used computing environment is containerised with Docker pinning
the R version to 3.6.3 and R packages to the MRAN snapshot of July 5th 2019.

1 Corresponding author

194

2 Reproducible GIScience

Funding Daniel Nüst : Project o2r , German Research Foundation, grant number PE 1632/17-1.
Carlos Granell : Ramón y Cajal Programme of the Spanish government, grant number RYC201416913.
Markus Konkol : Project o2r , German Research Foundation, grant numbers KR 3930/8-1 and
TR 864/12-1.

Acknowledgements Author contributions (see CRediT): all authors contributed to conceptualisa-
tion, investigation (number of assessed papers in brackets), and writing – original draft; FO (33):
writing - review & editing, software; DN (33): software, writing - review & editing, visualisation;
CG (30): writing - review & editing, software; BH (21): writing - review & editing; MK (30). We
thank Celeste R. Brennecka from the Scientific Editing Service of the University of Münster for her
editorial support and the anonymous reviewers for their constructive feedback.

1 Introduction

The past two decades have seen the imperative of Open Science gain momentum across
scientific disciplines. The adoption of Open Science practices is partially prompted by the
increasing costs of using proprietary software and subscribing to scientific journals, but
more importantly because of the increased transparency and availability of data, methods,
and results, which enable reproducibility [22]. This advantage is especially relevant for
the computational and natural sciences, where sharing data and code is a prerequisite for
reuse and collaboration. A large proportion of GIScience research today uses software to
analyse data on computers, meaning that many articles published in the context of the
GIScience conference series2 fall into the categories of data science or computational research.
Thereby, these articles face challenges of transparency and reproducibility in the sense of
the Claerbout/Donoho/Peng terminology [2], where reproduction means a recreation of the
same results using the same input data and methods, usually with the actual code created
by the original authors. The related concept of replication, i.e., the confirmation of insights
gained from a scientific study using the same method with new data, is of crucial importance
to scientific progress, yet it is also frequently challenging to realise for interested readers of
a published study. So far, despite the GIScience conference series’ rigorous review process,
reproducibility and replicability have not been a core concern in the contributions. With
reproducibility now being a recognised topic in the call for papers, it is time to take stock
and identify possible action. In previous work [26], we assessed the reproducibility of a
selection of full and short papers from the AGILE conference series3, a community conference
organised by member labs of the Association of Geographic Information Laboratories in
Europe (AGILE). Using systematic analysis based on a rubric for reproducible research,
we found that the majority of AGILE papers neither provided sufficient information for a
reviewer to evaluate the code and data and attempt a reproduction, nor enough material for
readers to reuse or extend data or code from the analytical workflows. This is corroborated
by research in related disciplines such as quantitative geography [3], qualitative GIS [21],
geoscience [16], and e-Science [10]. The problems identified in these related research areas
are transferable to the scientific discipline of GIScience, which operates at the intersections
of aforementioned fields [11]. In any case, observations on the lack of reproducibility in all
scientific fields contrast with the clear advantages and benefits of open and reproducible
research both for individuals and for academia as a whole (cf. for example [6, 19, 17, 5]). As
a consequence, we have initiated a process to support authors in increasing reproducibility

2 https://www.giscience.org/
3 https://agile-online.org/conference

195

F. O. Ostermann, D. Nüst, C. Granell, B. Hofer, M. Konkol 3

for AGILE publications; as a main outcome, this initiative has produced author guidelines
as well as strategies for the AGILE conference series4.

The AGILE conference is related to GIScience conference in terms of scientific domain
and contributing authors, but is different in organisational aspects. Two open questions
are thus whether the GIScience conference series faces the same issues, and whether similar
strategies could be applied successfully. To begin this investigation, we conducted a simple
text analysis of GIScience conference proceedings5 to evaluate the relevance of computational
methods in the conference papers. The analysis searched for several word stems related to
reproducibility: Generic words indicating a quantitative analysis, e.g., “data”, “software”,
or “process”; specific platforms, e.g., “GitHub”; and concrete terms, e.g., words starting
with “reproduc” or “replic”. Table 1 shows the results of the search for each year analysed.
The take-away message from the text analysis is that algorithms, processing, and data play
an essential role in GIScience publications, but few papers mentioned code repositories or
reproduction materials. Therefore, an in-depth assessment of the reproducibility of these
publications was deemed necessary.

The main contribution of this work addresses two objectives: First, it aims to investi-
gate the state of reproducibility in the GIScience conference community. This investigation
broadens our knowledge base about reproducibility in the GIScience discipline and informs
us about the situation in the GIScience conference series specifically (details in section 4).
Second, it aims to apply the assessment procedure used for AGILE conference papers (pre-
sented in section 3) to the papers of the GIScience conference, so that the broader suitability
of this procedure is evaluated using a different dataset, and thereby providing evidence of its
replicability. Such a transfer validates the developed methodology. We discuss these findings
and present our conclusions in the final two sections (5 and 6). Together, these objectives
yield important findings for the discussion of reproducibility within the GIScience conference
community and the GIScience discipline at large. We believe that GIScience as a discipline
would greatly benefit from more studies that reproduce and replicate other studies, similar
to other disciplines that are recognising the value of replication for innovating theory [23],
and argue that such a replication study is not lacking innovation but is a prerequisite for
innovating community practice. Only then can a fruitful dialogue take place on whether and
how to improve reproducibility for the GIScience conference series, and whether the recent
steps taken at AGILE6 could be an inspiration for GIScience conferences as well.

2 Related work

This work builds and expands on earlier work [26], which already provides an overview of
reproducible research in general, including definitions, challenges, and shortcomings. In
the following, we focus therefore on recently published works and briefly introduce related

4 See the initiative website at https://reproducible-agile.github.io/, the author guidelines at https:
//doi.org/10.17605/OSF.IO/CB7Z8 [24] and the main OSF project with all materials https://osf.io/
phmce/ [25].

5 The full text analysis and the results is available in this paper’s repository in the follow-
ing files: giscience-historic-text-analysis.Rmd contains the analysis code; the result data
are two tables with counts for occurrences of words respectively word stems per year in
results/text_analysis_topwordstems.csv and results/text_analysis_keywordstems.csv; a word-
cloud per year is in file results/text_analysis_wordstemclouds.png.

6 See the initiative website at https://reproducible-agile.github.io/, the author guidelines at https:
//doi.org/10.17605/OSF.IO/CB7Z8 [24] and the main OSF project with all materials https://osf.io/
phmce/ [25].

196

4 Reproducible GIScience

Table 1 Reproducibility-related word stems in the corpus per year of proceedings

year words reproduc.. replic.. repeatab.. code software algorithm(s) (pre)process.. data.* result(s) repository/ies github/lab

2002 23782 6 2 0 11 61 191 150 897 129 62 0
2004 26728 4 1 0 34 50 138 258 849 263 4 0
2006 32758 6 0 0 12 32 335 250 856 164 0 0
2008 27356 3 6 1 3 11 331 146 854 218 17 0
2010 23004 3 1 0 8 16 164 276 650 162 0 0

2012 28860 2 0 0 101 27 238 190 1048 311 3 0
2014 29534 3 4 1 12 18 255 159 1070 228 3 0
2016 24838 2 0 0 23 21 333 150 1007 202 4 1
2018 23318 3 10 0 15 15 201 160 891 294 6 6
Total 240178 32 24 2 219 251 2186 1739 8122 1971 99 7

Note:
The very high value for ’code’ in 2012 is due to a single paper about land use, for which different "land use codes" are defined, discussed and used.

meta-studies.
Few groups have attempted practical reproduction of computational works related to

GIScience. Konkol et al. [16] conducted an in-depth examination of the computational
reproducibility of 41 geoscience papers with a focus on differences between the recreated
figures. The set of papers was, similar to our work, drawn from a fixed group of two outlets
(journals), but it was further limited to recent papers providing code in the R language. The
main issues raised by Konkol et al. [16] are similar to those identified in a recent report on
the reproducibility review during the AGILE conference 20207, where the reproducibility
committee summarised the process and documented relevant obstacles to reproducibility of
accepted papers.

Within the geospatial domain, Kedron et al. [13] provide a recent review of opportuni-
ties and challenges for reproducibility and replicability. They transfer solutions from other
domains but also discuss and conceptualise the specific nature of a reproducibility and repli-
cability framework when working with geospatial data, e.g., handling context, uncertainty
of spatial processes, or how to accommodate the inherent natural variability of geospatial
systems. In a similar manner, Brunsdon and Comber [4] investigate reproducibility within
spatial data science, with special attention to big spatial data. They support the need for
open tools, knowledge about code, and reproducibility editors at domain journals and con-
ferences, but they also introduce the perspective that spatial analysis is no longer conducted
only by GI/geo-scientists or geographers and connect reproducibility with critical spatial un-
derstanding. The more conceptual work in those articles is complemented by the assessment
of reproducibility conducted in this paper.

Two recent studies from distant disciplines, wildlife science [1] and hydrology [32], also
relate to our work in this paper. Both studies investigate a random set of articles from
selected journals and use a stepwise process of questions to determine the availability of
materials and eventually reproduce workflows if possible. Archmiller et al. [1] use a final
ranking of 1 to 5 to specify the degree to which a study’s conclusions were eventually
reproduced. Similar to our classification scheme, their ranking models fit the general notion
of a “reproducibility spectrum” [30].

3 Reproducibility assessment method

3.1 Criteria
The assessment criteria used for the current study were originally defined in previous work,
so we provide only a short introduction here and refer to Nüst et al. [26] for details. The
three assessment criteria are Input Data, Methods, and Results. Input Data comprises all

7 https://osf.io/7rjpe/

197

F. O. Ostermann, D. Nüst, C. Granell, B. Hofer, M. Konkol 5

datasets that the computational analysis uses. Methods encompasses the entire computa-
tional analysis that generates the results. Since Methods is difficult to evaluate as a whole,
we split this criterion into three subcriteria: Preprocessing includes the steps to prepare the
Input Data before the main analysis; Methods, Analysis, Processing is the main analysis;
Computational Environment addresses the description of hard- and software. Finally, the
criterion Results refers to the output of analysis, e.g., figures, tables, and numbers.

For each of these (sub)criteria, we assigned one of four levels unless the criterion was
not applicable (NA). Unavailable (level 0) means that it was not possible to access the
paper’s data, methods, or results, and that it was impossible to recreate them based on
the description in the paper. Documented (level 1) indicates that the paper still did not
provide direct access to datasets, methods, or results, but that there was sufficient description
or metadata to potentially recreate them closely enough for an evaluation; yet, often a
recreation was unlikely due to the huge amount of effort needed. For example, with regard to
the methods criteria, Documented means that pseudo code or a textual workflow description
was provided. Available (level 2) was assigned if the paper provided direct access to the
materials (e.g., through a link to a personal or institutional website), but not in the form of
an open and permanent identifier, such as a digital object identifier (DOI). The indication
of a DOI does not apply to the methods criteria, as it is not yet common practice to make
a permanent reference to code, libraries, and system environments with a single identifier.
The gold standard, Available and Open (level 3), requires open and permanent access to
the materials (e.g., through public online repositories) and open licenses to allow use and
extension.

Note that levels are ordinal numbers that can be compared (3 is higher than 2), but
absolute differences between numbers must not be interpreted as equals: Moving one level
up from 0 to 1 is not the same as from level 1 to level 2. While reaching level 1 is fairly
straightforward, moving to level 2 means one must create a fully reproducible paper.

3.2 Process

The overall approach to assessing the reproducibility of GIScience papers followed the pre-
vious assessment of AGILE papers [26], and was conducted by the same persons. Contrary
to the AGILE investigation, all full papers in the GIScience conference series (from the
2012 to 2018 editions) were assessed. This is partly because no obvious subset exists, such
as the nominees for best papers as in the case of the AGILE conference series, but also
because we aimed to work with a larger dataset for potentially more informative results.
Each GIScience conference paper was randomly assigned to two assessors who evaluated it
qualitatively according to the reproducibility criteria. The assessors were free in the way
they approached the assigned evaluations, depending on the structure of the paper and the
assessor’s familiarity with the topic. An evaluation could range from browsing the paper
to identify relevant statements in case of high familiarity to a thorough reading of the full
text. The identification of relevant content could be supported to some extent by a PDF
reader with multiple highlights, using keywords like e.g., “data, software, code, download,
contribution, script, workflow”. The results of the individual assessments were joined in a
collaborative Google Spreadsheet. This spreadsheet also had a comments column for as-
sessors to record relevant sources and decisions. In case of disagreement between assessors,
arguments for and against a certain reproducibility level were discussed in the entire group of
five assessors until a consensus was reached. Only then were the assessments merged into a
single value. A snapshot of both the unmerged and merged values was stored as a CSV file in

198

6 Reproducible GIScience

the collaboration repository for transparency and provenance8. Two independent assessors
per paper increased the objectivity of the final assessment. Disagreements and conducting
the assessment one year at a time, going backwards from the most recent year, were found
helpful in aligning the interpretation of criteria and, in rare cases, led to an adjustment of
similar cases in other papers.

The discussion about the correct assignment of levels led to a reflection on how to apply
the rubric for special situations. For the Input Data criterion, some papers had input
data “available” at the time of writing/publication that was not available anymore at the
time of evaluation, due to broken links, changes in the URL structure of a website, or
projects and/or personal websites that were down or moved. In such cases, we gave the
authors the benefit of the doubt and assumed the data were accessible some time after the
publication of the conference proceedings. We did not give those papers an arbitrary score
and discussed internally the best level per case; yet, such papers never earned a 3, which
would require permanent resolving of the link. Related to this criterion, simulation data,
like the specification or configuration of agents in an agent-based system, was not treated
as input data (resulting in NA if no other data was used), but as parameters of the main
analysis, i.e., as part of the Methods, Analysis, Processing.

Preprocessing covers preparatory work for the actual analysis involving various tasks
such as data selection, cleaning, aggregation, and integration. However, the dividing line
between data preprocessing and processing (i.e., the main analysis) proved to be often vague,
and occasionally assessors disagreed whether the preprocessing criterion should be assigned
NA, Unavailable, or Documented (0 or 1, respectively). Therefore, we decided eventually
to apply the Preprocessing criterion only in cases where papers specifically mentioned a
preprocessing task independent of the actual analysis or method, e.g., when clearly stated
in a separate sub-section of the paper.

Lastly, human subject tests and surveys were also a special case. Human-related research
activities were rated as 1 in the methods/analysis/processing criterion if sufficiently docu-
mented; nonetheless, a sufficient documentation in these cases did not mean that original
sources were available or could be exactly recreated.

3.3 Paper corpus

In total, 87 papers from the GIScience conferences in 2012, 2014, 2016, and 2018 were
assessed. A table in the reproducibility package shows the full results of the assessment and
the included raw data provides details on assigned assessors, authors, etc. [27]. 12 papers
(14%) across all years were identified as conceptual papers9 and were not included in the
corpus. The number of conceptual papers in GIScience conferences was low over the analysed
years (2012: 4; 2014: 5; 2016: 3), and none in 2018. This might suggest an increasingly
predominant and ubiquitous role of analytical datasets and computational workflows in the
generation of the final published results in the field.

8 The assessment results are in the file results/paper_assessment.csv. As an example, commit 464e630
and 2e8b1be are the pre-merge and post-merge commit after completing the assessment of the papers
from 2014. The pre-merge commit contains the assessments including the assessors’ initials, e.g. “CG: 1,
MK: 1”.

9 See [26] for a definition of “conceptual”.

199

F. O. Ostermann, D. Nüst, C. Granell, B. Hofer, M. Konkol 7

Table 2 Statistics of reproducibility levels per criterion (rounded to one decimal place)

input data preproc. method/analysis/proc. comp. env. results
Min. 0.0 0.0 0 0.0 0.0
Median 1.0 1.0 1 0.0 1.0
Mean 0.7 0.8 1 0.3 1.1
Max. 2.0 2.0 2 1.0 2.0
NA’s 1.0 24.0 0 0.0 0.0

4 Reproducibility of GIScience conference papers

Table 2 shows aggregated values for the assessed reproducibility levels. If we look at the
median values of the five criteria (Table 2), a typical GIScience paper scores 1 1 1 0 1. This
score translates in practical terms into a paper that is sufficiently documented to claim that
reproduction could be attempted within a reasonable time frame after publication. While
such a level of reproducibility is typically accepted by journals and conferences today, it
does not guarantee that a reproduction would be possible and practical. A reproduction
of such a paper would require considerable effort, namely technical skills, communication
with authors, and time not only to both gather, recreate, and/or analyse all the necessary
resources (data, code, etc.) but also to recreate the specific computational environment
of the paper. Especially the latter is very unlikely, as the computational environment is
generally not specified at all, as demonstrated by the median value of 0 (Unavailable) for
this sub-criterion.

Figure 1 shows the distribution of the reproducibility levels for each criterion. None
of the papers reached the highest reproducibility level of 3 (Available and Open) on any
criterion. Only 12 papers reached level 2 (Available) in the Input Data criterion. Similar to
previous results [26], the number of papers with level 0 for Input Data was especially high
(33, corresponding to 44%), which is a significant barrier to reproduction since input data
is not only unavailable but also cannot be recreated from the information provided in the
paper.

Preprocessing applied to only 51 publications. For 24 papers, the Preprocessing criterion
was not applicable (NA). This large number is a result of our decision to assess Preprocessing
only if papers explicitly stated or described a preprocessing step in their analysis, which few
did. This does not mean the assessment ignored missing information on preprocessing step,
only that such missing information would then reduce the level of the Methods criterion
instead. Obviously, if data preprocessing is required but it is either not indicated in the
paper or is not provided as an additional (computational) step or resource, the ability to
reproduce the paper will be limited. The achieved levels for Preprocessing remained low:
37 papers reach level 1 (Documented), about half of the papers with level 1 in the Methods
criterion. For the other half, it was not clear whether data preprocessing tasks existed at
all, or whether these tasks were part of the main analysis.

Methods and Results criteria show a similar distribution (see Figure 1). Indeed, 65 pub-
lications had level 1 in both criteria, which represents 87% of the papers assessed. In this
sense, most of the assessed papers fall below the minimum standard for reproduction in the
methods and results criteria. All papers except one reached level 1 for the Results criterion,
which shows that the peer review worked as expected for almost all articles. In other words,
authors are concerned with making the results understandable to the reviewers, which is
not always the case for the other criteria. More generally, this aspect raises the question
of whether peer review should stop in the absence of minimal evidence of the input data,

200

8 Reproducible GIScience

0

10

20

30

40

50

60

70

0 1 2 3 NA

Level

Input data

0

10

20

30

40

50

60

70

0 1 2 3 NA

Level

Preprocessing

0

10

20

30

40

50

60

70

0 1 2 3 NA

Level

Methods/Analysis/
Processing

0

10

20

30

40

50

60

70

0 1 2 3 NA

Level

Computational
Environment

0

10

20

30

40

50

60

70

0 1 2 3 NA

Level

Results

Figure 1 Barplots of reproducibility assessment results; levels range from 0 (leftmost bar) to
’not applicable’ (rightmost bar).

analysis, and computational environment used in a paper.
Finally, papers scored worse on the Computational Environment criterion. Overall,

54 publications (72%) remained at level 0, which means that no information was provided
in the paper about the computing environment, tools, or libraries used in the reported anal-
ysis. The Computational Environment criterion and the Input Data criterion accounted for
a significant number of 0 values, which clearly signals an impediment to reproduction. It
also shows a rather low recognition of data and software as academic outputs, because both
data and software should be properly cited to give credit to their creators [18, 12].

Figure 2 shows an alluvial diagram of all scores, i.e., combinations of criteria values of
those 49 papers without any NA criterion. Most of the excluded papers have NA for Prepro-
cessing, therefore this criterion is not included in the figure. The diagram confirms overall
patterns seen before. The vast majority of papers have level 1 in Methods/Analysis/Process-
ing and Results. Input data is most diverse, with a surprisingly large number of papers with
level 0 but also the largest fraction of papers reaching level 2. Many papers show low levels
in Computational Environment.

The diagram illustrates how groups of papers with similar properties ‘flow’ through the
different criteria Three major groups, which represent 34 of the papers (69%) included in the
figure, become visible as broad bands. Two groups with 10 papers each start with level 0 for
Input Data and 1 for Methods/Analysis/Processing and reach a 1 for Results, while they are
divided equally between level 0 and 1 for Computational Environment. These two groups
seem to indicate that the authors and reviewers alike follow the established pattern that
results outweigh concerns for transparency and reproducibility, since computational papers
with Unavailable input data are irreproducible The third and largest group matches the
overall mean values for the typical GIScience paper with level 1 for all criteria except for
Computational Environment.

The diagram also shows additional interesting patterns for a few papers. The papers
with the lowest level of 0 in Results, i.e., according to the assessors the results are doc-

201

F. O. Ostermann, D. Nüst, C. Granell, B. Hofer, M. Konkol 9

0

1

2

1

2

0

1

1

2

0

10

20

30

40

50

Input Data Methods/
Analysis/
Processing

Computational
Environment

Results

Category

N
um

be
r

of
 p

ap
er

s

Category levels (#)

0 0 0 1 (1)

0 1 0 1 (10)

0 1 1 1 (10)

1 1 0 0 (1)

1 1 0 1 (14)

1 1 0 2 (1)

1 1 1 1 (3)

1 2 0 1 (1)

2 1 0 1 (3)

2 1 1 1 (2)

2 1 1 2 (2)

2 2 0 2 (1)

Figure 2 Alluvial diagram of common groups of papers throughout 4 of 5 categories including
only papers without any “not applicable” (Level NA) value; category Preprocessing was dropped
because difficulty to clearly assess it lead to many “not applicable” values.

umented insufficiently and thus difficult or impossible to fully understand, actually have
better values in previous criteria. Only few papers that start with level 2 in Input Data can
keep this level for Methods/Analysis/Processing, and even those who do later drop to level 0
in Computational Environment. Only one paper each shows the following surprising paths:
Starting with level 1 for Input Data , then moving up to level 2 in Methods, before reaching
level 2 in Results despite having only values of 1 or 0 in other criteria. In summary, not a
single paper can reach the required levels for an immediate reproduction by ensuring that all
required pieces are Available (level 2), not even considering the further challenges for repro-
ductions, such as incomplete documentation [28]. An investigation of yearly scores to track
developments over time does not show any trend, i.e., there is little change in reproducibility
over the study period10. The overall low values for Computational Environment are one sig-
nal that confirms the growing concerns for reproducibility and reusability of computational
research are not misplaced.

5 Discussion

5.1 State of reproducibility in the GIScience conference series
Our first research objective was to assess the state of reproducibility in the GIScience con-
ference series. A recurrent issue found in the analysis was the inability to access input data
based on the information provided in the paper. Most of the links and pointers to datasets
reported at the time of publication were either broken (e.g., non-existing resource, HTTP
404 error, invalid URL syntax) or not available anymore (URL works but redirects to a

10 See the additional analysis and plots published at https://nuest.github.io/
reproducible-research-at-giscience/giscience-reproducibility-assessment.html or in
the paper’s reproducibility package [27].

202

10 Reproducible GIScience

different generic page; specific resource from the paper no longer exists). In these cases, a
level 2 in the Input Data criterion was deserved at the time of publication; however, when
evaluating the level of reproducibility some time later, as was done in this work, level 2 is no
longer suitable for those papers. From a reproducibility point of view, the input data was
therefore not accessible, although contacting the authors could still be attempted. However,
according to the meaning of the criterion and in practical terms, this is equivalent to includ-
ing the statement “available upon request” in the paper and thereby level 0. An important
part of reproducibility is that access to material should not degrade over time, which is best
achieved by depositing data in repositories, including sensitive data (using the appropriate
mechanisms), and properly citing it. In this assessment of reproducibility, we decided to
give the authors the benefit of the doubt and awarded a value of 2 for Input Data even if we
could not conclusively determine, e.g., by using the Internet Archive’s Wayback Machine11,
whether the original website ever existed.

Regarding the common situation of a paper with Documented (level 1) for all criteria, our
interpretation is that this is indeed a regular paper that is up to current scientific standards.
Does this imply that a paper with Unavailable (level 0) in any criterion should not have
been accepted? We believe that this requires differentiation between past and future papers.
The criteria used in this paper were not included in the previous call for papers or in the
reviewer guidelines, and therefore received less attention from authors or reviewers. Thus,
we have analysed work in a historical context when there were few concrete incentives to
push these aspects, beyond the general concerns for good scientific practice. Nowadays, with
awareness about reproducibility being raised through initiatives, projects, and publications
about it, we would expect that reproducibility levels increase, and argue that papers with
Unavailable in one more criteria should not be accepted anymore without a clear and explicit
justification (e.g., sensitive data on human subjects). This does not imply that it is always
necessary to achieve the gold standard of Available and Open. The overall objective should
be to make a paper as reproducible as possible before publication. We argue that, for most
currently published works at the GIScience conference, Available would have been achievable
and feasible with reasonable efforts.

However, such a change in standards for paper acceptance would also mean that re-
searchers, editors, and publishers might have to reevaluate their focus on publishing novel
and purportedly groundbreaking results in science, and give as much weight to publishing
the full process and collection of parts that would allow readers to try to fully understand
the research. Clearly, Unavailable for Input Data is the most problematic, because without
sufficient knowledge about the characteristics of the input data, all attempts at reproducing
results are bound to fail, even when the textual documentation of the data would potentially
allow for an time-intensive recreation of the computational workflow.

5.2 Transferability of method
Concerning our second research objective, we can state that the overall process and the
application of the reproducibility rubric was successfully replicated with a different data
set. This is not entirely surprising given that AGILE and GIScience conference series share
similarities in target audience, review process, and publication of proceedings (more on
that in the following section). More importantly, the process faced similar challenges as
we recalled from its earlier application. This is crucial information, because the successful

11 https://web.archive.org/.

203

F. O. Ostermann, D. Nüst, C. Granell, B. Hofer, M. Konkol 11

replication of the process, including its challenges, enables us and others to ground any
changes in solid evidence. In particular the Preprocessing criterion caused many discussions
among the reproducibility reviewers during the assessment. It is often not clear or a matter
of interpretation if a particular processing step belongs to a minor basic transformation of
input data, if it is already part of the main analysis, and when it is a truly distinct step
in the process. The borders are vague and hence scores should be interpreted with caution.
Likewise, the Computational environment is also difficult to distinguish from analysis, and
technology and practices for the effective management of the computing environment have
reached mature states relatively recently. Future reproducibility assessments of papers could
provide a more precise definition for pre-processing, e.g., only use it if the authors use the
term, or might consider to drop the category, and benefit from rules to deal with the specific
issues of older workflows, similar as discussed for input data above. Furthermore, it is
important to remember that the levels of reproducibility are not equidistant in the sense
that a level of 2 would be twice as good as a level of 1, or that the effort needed is twice
as high. A level of 1 should be the standard for current and future peer-reviewed papers.
Reaching level 2 requires several additional steps, while reaching the gold standard of 3 is
again a comparatively small step from level 2 in terms of effort - the main difference is to use
public repositories with a DOI - yet with a high positive impact on permanent accessibility.

Although the replication was successful, the process was again labour-intensive, making
it problematic to scale it up to assess multiple years of several popular journals, for example.
Further, despite our best efforts for transparency and the four-eyes principle in the assess-
ment, the process is inherently subjective. A different group of investigators might score
papers differently. While natural language processing techniques have made great progress
in the past decades, an automated assessment of a paper’s reproducibility still seems out-of-
reach. Including important information as machine-readable metadata could allow to come
closer to automation.

5.3 Comparison of conferences
Given that we followed the same process as in [26] and demonstrated the transferability
of the method, comparing the two conference series seems appropriate. It is important
to remember that we do not attempt such a comparison with the objective of declaring
a “winner”. The published work and contributing community of the two conferences are
similar enough for a comparison, yet their organisation (setup, process, geographic focus)
differ too much for a simplistic ranking. However, a comparison is required to sensibly
discuss whether the guidelines developed for AGILE might also be promising for GIScience:
Are they transferable? If not, what adaptations seem necessary?

Concerning the contributing and participating academic communities, Egenhofer et al. [8]
and Kemp et al. [14] both include both conferences series as outlets for GIScience research.
Further, Keßler et al. [15] investigate the bibliographies of four GIScience conference series,
including GIScience and AGILE for the year 2012, and identify 15 authors who have pub-
lished in both conference series. We conducted a cursory investigation of the body of authors
for full papers, revealing significant overlap12: Out of 571 unique AGILE and 405 unique
GIScience full paper authors, 86 published in both conferences, and this includes all 15 au-
thors mentioned by Keßler et al. [15]. Therefore, the strong relation between the AGILE

12 The data and code for the brief exploration into the authorship across the conferences considered in
this work can be found in the directory author_analysis of this paper’s reproducibility package [27].

204

12 Reproducible GIScience

Table 3 Mean values per criterion for both conferences (rounded to two decimal places)

Criterion AGILE full papers GIScience papers
input data 0.67 0.72
method/analysis/processing 1.00 1.03
computational environment 0.62 0.28
results 0.88 1.05

and GIScience conference series confirms our approach to apply the same methodology to
GIScience that has been developed for AGILE conference publications, and it might lead to
similar implications for improving reproducibility.

Nevertheless, before discussing any strategies to improve reproducibility, it is important
to identify and consider the differences between the two conference series. GIScience is a bian-
nual conference series whereas AGILE is annual, and they feature different pre-publication
review processes and review management systems: In AGILE both authors and reviewers
are anonymous, while in GIScience only the reviewers are. Furthermore, the AGILE con-
ference series has the AGILE association13 as an institutional supporter, which means a
more stable organisational and financial framework for activities spanning more than one or
between conferences. However, like GIScience, local conference organisers for AGILE have
the main financial burden and experiences are informally handed over between organising
committees. Geographic focus is also different: GIScience has a global target audience, and
the individual conferences are likely to be different in their contributor communities because
of the moving conference location, which often means lowered accessibility for authors from
other parts of the world. AGILE, by comparison, has a European focus and accessibil-
ity is more homogeneous, although the conference location moves every year,. This likely
translates into a less fluctuating and less geographically diverse audience at AGILE. Clearly,
these observations will need a reassessment in several years to evaluate the impact of both
conferences going full online in 2020/21 because of the travel and activity restrictions due
to the COVID-19 pandemic.

Concerning the paper corpora, the publication years considered here (2012-2018) are
similar to the assessment of AGILE papers (2010-2017), which makes the results comparable
in the sense of what methods and tools would have been available for authors. Furthermore,
we note that both conferences have a similar ratio of conceptual papers which were not
assessed for reproducibility: In the AGILE corpus we identified 5 of 32 conceptual papers
(15.6%), in the GIScience corpus there were 12 of 87 (13.8%). This indicates that both
conferences have similar share of papers that used, at least in part, computational methods.
On the content of the papers, our overall impression was that a larger share of GIScience
papers included theoretical, conceptual, or methodological aspects, while AGILE papers
seemed to feature more empirical and/or applied geoinformation science research.

Regarding the results of the reproducibility assessments as summarised in Table 3, the
nature of the data and sample size does not support statistical analyses on significant dif-
ferences. Nevertheless, looking at the Input Data criterion, GIScience has a slightly higher
mean value compared to AGILE full papers (0.72 as opposed to 0.67) and a median of 1.
These values indicate that the GIScience contributions had a slightly better, but by no
means optimal, availability of input data. The pattern of reproducibility of the papers’
workflows (category Method, Analysis, Processing) was very similar for the two conference

13 https://agile-online.org/.

205

F. O. Ostermann, D. Nüst, C. Granell, B. Hofer, M. Konkol 13

series: The majority of papers achieved a level of 1, resulting in a mean of 1.03 for GIScience
and 1 for AGILE full papers. The Computational Environment category shows the largest
difference (although at overall low levels): AGILE scored better with a mean of 0.62 vs. 0.28
for GIScience. The Results category scores were again slightly higher for GIScience, with
a mean of 1.05 vs. a mean of 0.88 for AGILE. Several papers in AGILE received a level
of 0 here, indicating that crucial information is missing to connect analysis outputs and
presented results. We refrain from comparing the Preprocessing category for the reasons
stated earlier.

This comparison lets us draw two main conclusions: First, we conclude that both the
target audience and the content of the two conference series are similar enough to be afflicted
with similar shortcomings in terms of reproducibility, and thus, they both likely respond to
similar solutions. Second, we conclude that the AGILE conference series seems structurally
better positioned to support changing culture, because of a more stable audience and insti-
tutional support. The introduction of the AGILE reproducibility guidelines was achieved
within a short time frame and with financial support in the form of an “AGILE initiative”,
including travel funding for an in-person workshop. For GIScience, the task of changing the
review process to foster better reproducibility falls squarely on the shoulders of the changing
program committees. However, the initial results of AGILE’s new guidelines show that even
small changes can lead to a significantly improved outcome.

6 Conclusions and outlook

In this work we investigated the reproducibility of several years of GIScience conference pub-
lications. The paper corpus is large enough for a representative sample and comparable to
that used for the AGILE assessment study due to largely overlapping time window. However,
this study does not intend to make judgements on AGILE vs. GIScience conference quality,
nor to question the papers’ scientific soundness or relevance, since they were accepted for
publication at a reputable conference. Instead, we investigated the papers along a single
desirable quality dimension, reproducibility, which implies requirements on openness and
transparency.

Using a similarly high bar for reproducibility as in the earlier assessment study, the re-
sults show room for improvement, as none of the presented articles were readily reproducible.
The majority of articles provided some information, but not to the degree required to facil-
itate transparent and reusable research based on data and software. Overall, this is very
similar to the outcomes of our earlier study on AGILE papers. As part of the AGILE assess-
ment, we described concrete recommendations for individuals and organisations to improve
paper reproducibility [26]. We have argued that AGILE and GIScience share a sufficiently
common domain/discipline characteristics, audience, and author community, such that for
both communities the strategies to improve the situation should be similar. Therefore, the
previously identified recommendations are transferable to the GIScience conference series,
with the most important recommendations being (1) promoting outstanding reproducible
work, e.g., with awards or badges, (2) recognizing researchers’ efforts to achieve reproducibil-
ity, e.g., with a special track for reproducible papers, implementing a reproducibility review,
open educational resources, and helpful author guidelines including data and software cita-
tion requirements and a specific data/software repository, and (3) making an institutional
commitment to a policy shift that goes beyond mere accessibility [33]. These changes require
a clear roadmap with a target year, e.g., 2024, when GIScience starts to only accept compu-
tationally reproducible submissions and to check reproducibility before papers are accepted.

206

14 Reproducible GIScience

The concluding statement of Archmiller et al. [1] is directly transferable to GIScience: The
challenges are not insurmountable, and increased reproducibility will ensure scientific in-
tegrity. The AGILE reproducible paper guidelines [24] and the associated reproducibility
review processes as well as other community code review systems such as CODECHECK [9]
are open and “ready to use”. They can also be adopted for GIScience conferences, e.g., to
suit the peer review process goals and scheduling. Kedron et al. [13] stressed the need for a
comprehensive balanced approach to technical, conceptual, and practical issues. They fur-
ther pointed out that simple availability does not automatically lead to adoption. Therefore,
a broad discourse around these recommendations, tools, and concepts would be beneficial
for all members of the community, whether their work is more towards conceptual, compu-
tational, or applied GIScience. A survey for authors, as conducted for AGILE [26], could
help identify special requirements and specific circumstances, beyond the findings presented
here and in related work.

Future work may replicate the reproducibility assessment at other major events and out-
lets for GIScience research, such as GeoComputation or COSIT conferences and domain
journals (cf. [8] for an extensive list), but we would not expect significantly differing results.
Practical reproductions of papers, and even more so replications of fundamental works, are
promising projects to convincingly underpin a call for a culture change [29]. A successful
reproducibility turn would not mean that every reproducible paper would be fully repro-
duced, nor would this be necessary. But at least for influential, e.g., highly cited papers, a
validation of their applicability and transferability to other study areas should be possible—
reproducibility is a prerequisite for that. For example, Egenhofer et al. [8] provide for a list
of the most frequently cited articles as potential candidates. Such a project would ideally
be supported with proper funding. There is currently growing activity in the GIScience
discipline to address reproducibility and replicability of geospatial research. The GIScience
conference community has the opportunity to play a leading and shaping role in this pro-
cess, thereby ensuring its continuing attractiveness for authors to submit their work, and
in consequence its high relevance for the wider GIScience discipline. A timely adoption of
the technological and procedural solutions may allow GIScience researchers, together with
the entirety of academia, to level up and approach the challenges of the “second phase of
reproducible research” by tackling long-term funding for maintenance of code and data and
building supporting infrastructure for reproducible research [31].

References
1 Althea A. Archmiller, Andrew D. Johnson, Jane Nolan, Margaret Edwards, Lisa H. Elliott,

Jake M. Ferguson, Fabiola Iannarilli, Juliana Vélez, Kelsey Vitense, Douglas H. Johnson, and
John Fieberg. Computational Reproducibility in The Wildlife Society’s Flagship Journals.
The Journal of Wildlife Management, 84(5):1012–1017, 2020. doi:10.1002/jwmg.21855.

2 Lorena A. Barba. Terminologies for Reproducible Research. arXiv:1802.03311 [cs], February
2018. arXiv: 1802.03311. URL: https://arxiv.org/abs/1802.03311.

3 Chris Brunsdon. Quantitative methods I: Reproducible research and quantitative ge-
ography. Progress in Human Geography, 40(5):687–696, October 2016. doi:10.1177/
0309132515599625.

4 Chris Brunsdon and Alexis Comber. Opening practice: supporting reproducibility and crit-
ical spatial data science. Journal of Geographical Systems, August 2020. doi:10.1007/
s10109-020-00334-2.

5 Giovanni Colavizza, Iain Hrynaszkiewicz, Isla Staden, Kirstie Whitaker, and Barbara
McGillivray. The citation advantage of linking publications to research data. PLOS ONE,
15(4):e0230416, April 2020. doi:10.1371/journal.pone.0230416.

207

F. O. Ostermann, D. Nüst, C. Granell, B. Hofer, M. Konkol 15

6 David L. Donoho. An invitation to reproducible computational research. Biostatistics,
11(3):385–388, July 2010. doi:10.1093/biostatistics/kxq028.

7 Matt Duckham, Edzer Pebesma, Kathleen Stewart, and Andrew U. Frank, editors. Ge-
ographic Information Science. Springer International Publishing, 2014. doi:10.1007/
978-3-319-11593-1.

8 M. Egenhofer, K. Clarke, S. Gao, Teriitutea Quesnot, W. Franklin, M. Yuan, and David
Coleman. Contributions of GIScience over the past twenty years. In Harlan Onsrud and
Werner Kuhn, editors, Advancing Geographic InformationScience: The Past and Next Twenty
Years. GSDI Association Press, Needham, MA, 2016. URL: http://www.gsdiassociation.
org/images/publications/AdvancingGIScience.pdf.

9 Stephen Eglen and Daniel Nüst. CODECHECK: An open-science initiative to facilitate shar-
ing of computer programs and results presented in scientific publications. Septentrio Confer-
ence Series, (1), September 2019. doi:10.7557/5.4910.

10 Juliana Freire, Norbert Fuhr, and Andreas Rauber. Reproducibility of Data-Oriented Exper-
iments in e-Science (Dagstuhl Seminar 16041). Dagstuhl Reports, 6(1):108–159, 2016. URL:
http://drops.dagstuhl.de/opus/volltexte/2016/5817, doi:10.4230/DagRep.6.1.108.

11 Michael F. Goodchild. Geographical information science. International journal of geographical
information systems, 6(1):31–45, January 1992. doi:10.1080/02693799208901893.

12 Daniel S. Katz, Neil P. Chue Hong, Tim Clark, August Muench, Shelley Stall, Daina Bouquin,
Matthew Cannon, Scott Edmunds, Telli Faez, Patricia Feeney, Martin Fenner, Michael Fried-
man, Gerry Grenier, Melissa Harrison, Joerg Heber, Adam Leary, Catriona MacCallum, Hol-
lydawn Murray, Erika Pastrana, Katherine Perry, Douglas Schuster, Martina Stockhause, and
Jake Yeston. Recognizing the value of software: a software citation guide. F1000Research,
9:1257, January 2021. URL: https://f1000research.com/articles/9-1257/v2, doi:10.
12688/f1000research.26932.2.

13 Peter Kedron, Wenwen Li, Stewart Fotheringham, and Michael Goodchild. Reproducibility
and replicability: opportunities and challenges for geospatial research. International Journal
of Geographical Information Science, 0(0):1–19, August 2020. Publisher: Taylor & Fran-
cis _eprint: https://doi.org/10.1080/13658816.2020.1802032. doi:10.1080/13658816.2020.
1802032.

14 Karen Kemp, Werner Kuhn, and Christoph Brox. Results of a survey to rate GIScience
publication outlets. Technical report, AGILE Initiative - GIScience Publication Rating, 2013.
URL: https://agile-online.org/conference_paper/images/initiatives/results_of_a_
survey_to_rate_giscience_publications.pdf.

15 Carsten Keßler, Krzysztof Janowicz, and Tomi Kauppinen. spatial@linkedscience – Ex-
ploring the Research Field of GIScience with Linked Data. In Ningchuan Xiao, Mei-Po
Kwan, Michael F. Goodchild, and Shashi Shekhar, editors, Geographic Information Sci-
ence, Lecture Notes in Computer Science, pages 102–115, Berlin, Heidelberg, 2012. Springer.
doi:10.1007/978-3-642-33024-7_8.

16 Markus Konkol, Christian Kray, and Max Pfeiffer. Computational reproducibility in geosci-
entific papers: Insights from a series of studies with geoscientists and a reproduction study.
International Journal of Geographical Information Science, 33(2):408–429, February 2019.
doi:10.1080/13658816.2018.1508687.

17 Christian Kray, Edzer Pebesma, Markus Konkol, and Daniel Nüst. Reproducible Research
in Geoinformatics: Concepts, Challenges and Benefits (Vision Paper). In Sabine Timpf,
Christoph Schlieder, Markus Kattenbeck, Bernd Ludwig, and Kathleen Stewart, editors,
COSIT 2019, volume 142 of LIPIcs, pages 8:1–8:13. Schloss Dagstuhl Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.COSIT.2019.8.

18 Lawrence, Bryan, Jones, Catherine, Matthews, Brian, Pepler, Sam, and Callaghan, Sarah.
Citation and Peer Review of Data: Moving Towards Formal Data Publication. International
Journal of Digital Curation, 6(2), 2011.

208

16 Reproducible GIScience

19 Florian Markowetz. Five selfish reasons to work reproducibly. Genome Biology, 16:274,
December 2015. doi:10.1186/s13059-015-0850-7.

20 Jennifer A. Miller, David O'Sullivan, and Nancy Wiegand, editors. Geographic Information
Science. Springer International Publishing, 2016. doi:10.1007/978-3-319-45738-3.

21 Jannes Muenchow, Susann Schäfer, and Eric Krüger. Reviewing qualitative GIS research-
Toward a wider usage of open-source GIS and reproducible research practices. Geography
Compass, 13(6):e12441, 2019. doi:10.1111/gec3.12441.

22 Marcus R. Munafò, Brian A. Nosek, Dorothy V. M. Bishop, Katherine S. Button, Christo-
pher D. Chambers, Nathalie Percie du Sert, Uri Simonsohn, Eric-Jan Wagenmakers, Jen-
nifer J. Ware, and John P. A. Ioannidis. A manifesto for reproducible science. Nature Human
Behaviour, 1:0021, January 2017. doi:10.1038/s41562-016-0021.

23 Brian A. Nosek and Timothy M. Errington. What is replication? PLOS Biology,
18(3):e3000691, March 2020. doi:10.1371/journal.pbio.3000691.

24 Daniel Nüst, Frank Ostermann, Rusne Sileryte, Barbara Hofer, Carlos Granell, Marta Te-
perek, Anita Graser, Karl Broman, and Kristina Hettne. AGILE Reproducible Paper Guide-
lines. 2019. doi:10.17605/OSF.IO/CB7Z8.

25 Daniel Nüst, Frank Ostermann, Rusne Sileryte, Barbara Hofer, Carlos Granell, Marta Te-
perek, Anita Graser, Karl Broman, and Kristina Hettne. Reproducible Publications at AG-
ILE Conferences. 2019. URL: https://reproducible-agile.github.io/, doi:10.17605/
OSF.IO/PHMCE.

26 Daniel Nüst, Carlos Granell, Barbara Hofer, Markus Konkol, Frank O. Ostermann, Rusne
Sileryte, and Valentina Cerutti. Reproducible research and GIScience: an evaluation using
AGILE conference papers. PeerJ, 6:e5072, July 2018. doi:10.7717/peerj.5072.

27 Daniel Nüst, Frank Ostermann, Carlos Granell, and Barbara Hofer. Reproducibility package
for "Reproducible Research and GIScience: an evaluation using GIScience conference papers",
September 2020. doi:10.5281/zenodo.4032875.

28 Daniel Nüst, Frank Ostermann, Carlos Granell, and Alexander Kmoch. Improving repro-
ducibility of geospatial conference papers lessons learned from a first implementation of
reproducibility reviews. Septentrio Conference Series, (4), September 2020. URL: https:
//septentrio.uit.no/index.php/SCS/article/view/5601, doi:10.7557/5.5601.

29 Frank O. Ostermann. Linking Geosocial Sensing with the Socio-Demographic Fabric of Smart
Cities. ISPRS International Journal of Geo-Information, 10(2):52, January 2021. doi:10.
3390/ijgi10020052.

30 Roger D. Peng. Reproducible Research in Computational Science. Science, 334(6060):1226–
1227, December 2011. doi:10.1126/science.1213847.

31 Roger D. Peng and Stephanie C. Hicks. Reproducible Research: A Retrospective.
arXiv:2007.12210 [stat], July 2020. arXiv: 2007.12210. URL: http://arxiv.org/abs/2007.
12210.

32 James H. Stagge, David E. Rosenberg, Adel M. Abdallah, Hadia Akbar, Nour A. Attallah,
and Ryan James. Assessing data availability and research reproducibility in hydrology and
water resources. Scientific Data, 6(1):190030, February 2019. Number: 1 Publisher: Nature
Publishing Group. doi:10.1038/sdata.2019.30.

33 Victoria Stodden, Jennifer Seiler, and Zhaokun Ma. An empirical analysis of journal pol-
icy effectiveness for computational reproducibility. Proceedings of the National Academy of
Sciences, 115(11):2584–2589, March 2018. doi:10.1073/pnas.1708290115.

34 S. Winter, A. Griffin, and M. Sester, editors. Proceedings 10th International Conference on
Geographic Information Science (GIScience 2018), volume 114. LIPIcs, 2018. URL: http:
//www.dagstuhl.de/dagpub/978-3-95977-083-5.

35 Ningchuan Xiao, Mei-Po Kwan, Michael F. Goodchild, and Shashi Shekhar, editors.
Geographic Information Science. Springer Berlin Heidelberg, 2012. doi:10.1007/
978-3-642-33024-7.

209

13 CODECHECK: An Open Science initiative
for tHe independent execution of
computations underlying researcH
articles during peer review to improve
reproducibility

Authors & contribution Daniel Nüst (50%), Stephen J. Eglen

Venue F1000Research, status “[version 1; peer review: 1 approved, 1 approved with reser-
vations]” (revision submitted) 10.12688/f1000research.51738.1 (SNIP 2020: 0.92)

Date 03/2020

Licence Creative Commons Attribution (CC BY 4.0)

Repository https://github.com/codecheckers/paper

211

https://doi.org/10.12688/f1000research.51738.1
https://www.journalindicators.com/indicators/journal/21100258853
https://github.com/codecheckers/paper

METHOD ARTICLE

CODECHECK: an Open Science initiative for the

independent execution of computations underlying research

articles during peer review to improve reproducibility [version

1; peer review: 1 approved, 1 approved with reservations]

Daniel Nüst 1, Stephen J. Eglen 2

1Institute for Geoinformatics, University of Münster, Münster, Germany
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK

First published: 30 Mar 2021, 10:253
https://doi.org/10.12688/f1000research.51738.1
Latest published: 30 Mar 2021, 10:253
https://doi.org/10.12688/f1000research.51738.1

v1

Abstract
The traditional scientific paper falls short of effectively communicating
computational research. To help improve this situation, we propose a
system by which the computational workflows underlying research
articles are checked. The CODECHECK system uses open infrastructure
and tools and can be integrated into review and publication processes
in multiple ways. We describe these integrations along multiple
dimensions (importance, who, openness, when). In collaboration with
academic publishers and conferences, we demonstrate CODECHECK
with 25 reproductions of diverse scientific publications. These
CODECHECKs show that asking for reproducible workflows during a
collaborative review can effectively improve executability. While
CODECHECK has clear limitations, it may represent a building block in
Open Science and publishing ecosystems for improving the
reproducibility, appreciation, and, potentially, the quality of non-
textual research artefacts. The CODECHECK website can be accessed
here: https://codecheck.org.uk/.

Keywords
reproducible research, Open Science, peer review, reproducibility,
code sharing, data sharing, quality control, scholarly publishing

This article is included in the Science Policy

Research gateway.

Open Peer Review

Reviewer Status

Invited Reviewers

1 2

version 1
30 Mar 2021 report report

Nicolas P. Rougier , Inria Bordeaux Sud-

Ouest, Talence, France

1.

Sarah Gibson , The Alan Turing Institute,

London, UK

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

212

Corresponding authors: Daniel Nüst (daniel.nuest@uni-muenster.de), Stephen J. Eglen (sje30@cam.ac.uk)
Author roles: Nüst D: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project
Administration, Resources, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Eglen SJ: Conceptualization, Data
Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Writing –
Original Draft Preparation, Writing – Review & Editing
Competing interests: SJE is on the editorial board at the journal Scientific Data until March 2021. DN is reproducibility chair at the
Association of Geographic Information Laboratories in Europe's (AGILE) annual conference.
Grant information: This work was financially supported by the UK Software Sustainability Institute and a Mozilla Science mini grant. DN
is supported by grant PE1632/17-1 from the German Research Foundation (DFG).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Nüst D and Eglen SJ. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Nüst D and Eglen SJ. CODECHECK: an Open Science initiative for the independent execution of
computations underlying research articles during peer review to improve reproducibility [version 1; peer review: 1 approved, 1
approved with reservations] F1000Research 2021, 10:253 https://doi.org/10.12688/f1000research.51738.1
First published: 30 Mar 2021, 10:253 https://doi.org/10.12688/f1000research.51738.1

Page 2 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

213

Abbreviations
ACM: Association for Computing Machinery; ECRs: Early
Career Researchers; RCR: Replicated Computational Results;
TOMS: Transactions on Mathematical Software.

Introduction
Many areas of scientific research use computations to simulate
or analyse their data. These complex computations are difficult
to explain coherently in a paper1. To complement the traditional
route of sharing research by writing papers, there is a growing
demand to share the underlying artefacts, notably code and
datasets, so that others can inspect, reproduce or expand
that work (see Figure 1). Early proponents of this initiative
were Buckheit and Donoho2,3, who noted: “An article about
computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship.
The actual scholarship is the complete software development
environment and the complete set of instructions which generated
the figures.”

If researchers start sharing more artefacts, how might these
artefacts be examined to ensure that they do what they claim?
For example, although scientific journals now require a data
sharing statement that outlines what data the authors have (or will)
share, journals implement this differently. On one hand, journals
have been created to accept “data papers” (e.g., Scientific Data,
Earth System Science Data, Geoscience Data Journal, Biodiver-
sity Data Journal, Journal of Open Psychology Data, Open Data
Journal for Agricultural Research, Journal of Open Health Data);
these journals have established rigorous procedures by which
data are validated according to standards in each field. On the
other hand, many journals still allow authors to state “Data
available upon reasonable request”. Authors, while possibly well
intentioned at the time of writing the article, often cannot provide
data when requested as data disappears over time4.

Given that data are not routinely shared, what hope might there
be for sharing computer programs? Both data and software
are required to validate a computational analysis; data can be
seen as inert whereas code requires an environment to be run
in. This makes software harder to share. Our experience is that
researchers offer several reasons for why code is not shared,
e.g., “there is no documentation”, “I cannot maintain it”, or “I
do not want to give away my code to competitors”. Our view is
that sharing code, wherever possible, is good for the community
and the individual5,6. Having code and data openly available, and
archived, provides a valuable resource for others to learn from,
even if the code is broken or lacks documentation. However,
with a little effort, we believe that if an independent person can
re-run the programs, this is worth documenting and that this
reduces the barrier to evaluating non-text research materials. Just
as data journals’ validations of data and all journals’ peer review
provides a “baseline reassurance”, i.e., that a paper has been
checked by someone with an understanding of the topic7, the
same baseline could be provided for the workflow underlying
a paper. With this in mind, we have developed a set of princi-
ples and an example workflow that provides a pragmatic way of
checking that a paper’s code works, i.e., it is reproducible
following the Claerbout/Donoho/Peng terminology8.

Here we offer a thorough description of a process and its varia-
tions to integrate a much-needed evaluation of computational
reproducibility into peer review, and we demonstrate its
feasibility by means of 25 reproductions across scientific
disciplines. We call this system CODECHECK.

What is a CODECHECK?
Workflow and people
CODECHECK is best demonstrated by way of our example
workflow, and later we expand on the underlying principles. The
workflow involves three groups of people: (1) the author of a
paper providing the code to be checked, (2) the publisher of a
journal interested in publishing the author’s paper, and (3) the
codechecker, who checks that the author’s code works. The
six-step workflow we have refined is shown in Figure 2. In this
article, we also refer to a peer-reviewer who is independent of
this process, and performs the traditional academic review of the
content of an article.

Step 1: The author submits their manuscript along with the
code and data to the publisher. The code and data need not be
openly available at this point. However, in many cases the
code and data may be published on a code hosting platform,
such as GitHub or GitLab. Ideally, the author is expecting the
CODECHECK and prepares for it, e.g., by asking a colleague
to attempt a reproduction, and providing a set of instructions on
how to re-run the workflow.

Step 2: The publisher finds a codechecker to check the code.
This is analogous to the publisher finding one or more peer-
reviewers to evaluate the paper, except we suggest that the
codechecker and the author talk directly to each other.

Figure 1. The inverse problem in reproducible research. The
left half of the diagram shows a diverse range of materials used
within a laboratory. These materials are often then condensed for
sharing with the outside world via the research paper, a static PDF
document. Working backwards from the PDF to the underlying
materials is impossible. This prohibits reuse and is not only non-
transparent for a specific paper but is also ineffective for science as
a whole. By sharing the materials on the left, others outside the lab
can enhance this work.

Page 3 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

214

Figure 2. The CODECHECK example process implementation. Codecheckers act as detectives: They investigate and record, but do not
fix issues. Numbers in bold refer to steps outlined in the text.

Step 3: The codechecker runs the code, based on instructions
provided by the author. They check if some or all of the results
from the paper can be reproduced. If there are any problems
running the code, the codechecker asks the author for help,
updates, or further documentation. The burden to provide
reproducible material lies with the author. The codechecker then
tries to run the code again. This process iterates until either the
codechecker is successful, or the codechecker concludes the
workflow is not reproducible. As part of this process, the
codechecker could work entirely locally, relying on their own
computing resources, or in the cloud, e.g., using the open
MyBinder infrastructure9 or alternatives, some of which are
more tailored to scientific publications while others offer
commercial options for, e.g., publishers (cf. 10). A cloud-based
infrastructure allows for the codechecker and author to collabo-
ratively improve the code and enforces a complete definition of
the computing environment; but, unless secure infrastructure is
provided, e.g., by the publisher, this requires the code and
data to be published openly online. Note that the task of the
codechecker is to check only the “mechanics” of the workflow.
In the context of mathematics, Stodden et al.11 distinguish
between verification and validation; following their definition,
a CODECHECK ensures verification of computational results,
i.e., checking that code generates the output it claims to create,
but not a validation, i.e., checking that the code implements the
right algorithm to solve the specific research problem. Neverthe-
less, simply attempting to reproduce an output may highlight a
submission’s shortcomings in meeting a journal’s requirements
(cf. 12) and may effectively increase transparency, thereby
improving practices (cf. 13) even if the check does not go into
every detail.

Step 4: The codechecker writes a certificate stating how the
code was run and includes a copy of outputs (figures or tables)

that were independently generated. The certificate may include
recommendations on how to improve the material. The free
text in the certificate can describe exactly what was checked,
because each workflow is unique. Since no specific tool or
platform is required, such that no authors are excluded,
it is futile for the codechecker to use automation or fixed
checklists.

Step 5: The certificate and auxiliary files created during the
check, e.g., a specification of a computing environment, data
subsets or helper scripts, and the original code and data get
deposited in an open archive unless restrictions (data size,
license or sensitivity) apply. Currently, codecheckers deposit
the material on Zenodo themselves, but a publisher may com-
plete this step after integrating CODECHECK into its review
process. A badge or other visual aid may be added to the deposit
and the paper and link to the certificate. Although a badge
simplifies the CODECHECK into a binary value and risks
introducing confusion regarding the extent of the check, a badge
provides recognition value and acknowledges the completed
CODECHECK. The badge and the actual check are incentives
for undertaking the effort needed to provide a reproducible
workflow.

Step 6: The publisher can, depending on the timing, provide
the certificate to peer-reviewers or editors or publish it and link
between certificate, paper, and any repositories. Currently, the
codechecker creates these connections on Zenodo. They appear
as links with a relationship type on the Zenodo landing page
for a certificate, e.g., the “related identifiers” and “alternate
identifiers” of certificate 2020-02514. The publisher also credits
the codechecker’s work by depositing the activity in scholarly
profiles, such as ORCID (see peer review contributions in
ORCID records). The publisher also ensures proper publication

Page 4 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

215

metadata, e.g., links from the certificate repository to the
published paper or the original code repository.

Variations
Dimensions of CODECHECK workflows. Our workflow is
just one of many possibilities of a CODECHECK workflow.
Here we consider several dimensions in a space of possible
CODECHECK workflows (Figure 3). These aspects touch on
timing, responsibilities, and transparency.

When to do a CODECHECK and with what importance?
The time at which a CODECHECK is done and its ascribed
importance are closely connected, so we describe the dimensions
When and Importance together. The earlier a CODECHECK
happens in the publishing process, the more it can affect
editorial decisions: Is a paper published, sent back for revisions,
or rejected? Even earlier checks, i.e., a CODECHECK of a
preprint, may help to improve the workflow itself, even before a
publisher is involved. As such, codechecking papers could be
part of a preprint server’s policy or initiated by interested
authors.

Publishers could introduce a CODECHECK as a strict pre-
requisite. As this can reduce the workload of reviewers, such a
check should occur early in the review process. Yet, the later
in the review process the check happens, the easier is it to allow
bidirectional communication between the author and code-
checker, e.g., because the author might already be notified of the
paper’s acceptance and may be more willing to share materials
online closer to the paper’s publication date. A pre-review
CODECHECK means editors would send a submission for
peer review only if it passes the check, or include the cer-
tificate in the submission package provided to peer-reviewers.
Peer-reviewers may then judge the relevance of the computations
for the results of the work.

A CODECHECK may also be conducted in parallel to the
academic peer review. This puts less burden on the turnaround
time for the CODECHECK, yet it only makes the outcomes
available during the final consideration by the handling editor.
The check could also be assigned after suggestion by a reviewer,

which would remove the need for submissions to undergo a
pre-review screening. However, soliciting such a “specialist
review” is much less desirable than having a regular CODE-
CHECK, thus avoiding the situation in which some submissions
get special treatment. In both cases, the editor’s decision could
be based both on CODECHECK and peer-review reports.

A post-acceptance CODECHECK would have the smallest
impact on editorial decisions and may simply provide extra
merit on top of the submission’s acceptance. This is the least
impactful solution in which all material is still evaluated and
the results of the check are properly acknowledged, because
the check can be completed before publication of the paper.
The GIScience checks (see below) falls into this category: by
displaying a badge on the volume and article landing pages, the
AGILE conference highlights articles whose reproducibility
was confirmed. Similarly, in collaborations with journals, some
GIScience articles were checked whilst authors worked on
revisions.

A CODECHECK may also be conducted post-publication,
though this requires an update to the article and article meta-
data to reference the check so that readers can find the
CODECHECK. In general, publishers hesitate to make such
revisions to published articles. We do not prefer this option as
it has the least impact on current publishing practices and
downplays the importance of reproducible workflows for ensuring
good scientific practice.

Enhancing existing processes with CODECHECKs allows
communities to gradually transition towards more open practices.
When integrating a CODECHECK into existing review and
publication processes, the turnaround time is crucial. Depending
on when and who conducts the check, it might be done quickly
or it might delay publication. We found that a CODECHECK
generally takes 2–5 hours, with some outliers on the higher end.
This time includes writing and publishing the certificate but
excludes actual computation time, some of which took days.
These efforts are comparable to the time needed to peer review
a submission, which aligns with the efforts some volunteer
codecheckers are willing to make. Currently, there is considerable

Figure 3. The dimensions of implementing a CODECHECK process.

Page 5 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

216

amount of communicating about the process, especially regard-
ing who publishes which document when, so that proper
cross-referencing between paper and certificate is ensured
via persistent identifiers. When integrated into a peer review
platform, this handling of documents should become much more
streamlined.

Openness, or “Who knows who?” Anonymity is broadly
discussed, especially in the push towards open peer review
as part of the Open Science movement (cf. 15). Without
taking a strong stance on this topic, our motivation behind
CODECHECK for higher transparency and reproducibility does
indeed favour a more open review process. However, anonym-
ity can protect individuals16, e.g., junior scientists. The negative
effects of a signed review may be reduced if a CODECHECK
is not relevant for a journal’s decision to accept or reject, but
that is, of course, not desirable when the goal is higher transpar-
ency and reproducibility. Instead, CODECHECK is a technical
process that should generally find fixable problems; it is not
aimed at giving an opinion or identifying a faulty approach. If
passing a CODECHECK becomes mandatory, full transparency
may need revisiting as the relations between authors and
codecheckers would fall under the same social and community
challenges as open peer review (cf. 17).

The technical nature of the check and the challenge of
providing sufficient documentation is why we see great benefits
in bidirectional communication between author and codechecker.
Instead of trying to fix problems or guess the next step, the
codechecker can ask the author to rework the documentation or
update code. Instead of struggling to provide perfect instructions
and as a result possibly not sharing any code or data, the author
can make a best effort to document sufficiently. Authors and read-
ers can profit from a codecheckers’ experience and approach, as
during the check they may create useful and instructive files,
e.g., a machine-readable computing environment specification.
While communication between author and codechecker may
be anonymised via the publisher, it most likely only helps to
protect the identity of the codechecker, because code is hard to
anonymise. Therefore, the most effective and desirable situation
for the stakeholders is to hold a open and collaborative
CODECHECK. The contributions by the codechecker may even
be integrated into the code of the workflow and be acknowl-
edged as code commits. This way, proper credit can be given
within the research software development community.

Who does the CODECHECK? Just as with peer-reviewers, a
potential codechecker should have the right skills and
availability to do the work. Ideally, the codechecker has a
matching code and domain expertise to the paper, although a
well-documented workflow should be executable by any com-
putationally-competent person. Naturally, the more prerequisite
knowledge the codechecker has, the quicker they can understand
the goals and mechanics of an analysis. From our experiences,
the priority should be given to matching technical expertise first,
as lacking knowledge in setting up a computing environment
with a particular language or tool is much more of a problem
than assessing the outcome, e.g., comparing created figures with

the original, without an in-depth understanding of the domain.
The depth of the check will mostly be driven by the time required
and expertise of the checker, though in general, we expect a
CODECHECK to consider reproducibility of the results above
performance of the code.

Codecheckers could be drawn from a regular pool of peer-
reviewers, or from a special group of reproducibility reviewers
via specific roles such as reproducibility editors, or editorial
staff with a publisher. One codechecker is sufficient to verify
the workflow since it is mostly a factual process. Code usually
harbours systematic and repeatable mistakes and is thereby more
reliable and auditable than processes controlled by humans18,
e.g., in a laboratory. If however publication of the paper depends
on the CODECHECK, a second opinion may be required.

We also see a great opportunity to involve early-career
researchers (ECRs) as codecheckers. ECRs arguably have a high
interest in learning about new tools and technologies, to build
up their own expertise. CODECHECK offers a way for ECRs to
gain insights into new research and highlight the importance of
reproduction. ReScience X, a journal devoted to reproduction
and replication experiments19, shares an interest in this com-
bination. ECRs are also often familiar with new technologies,
thus also making them likely to author CODECHECK-ready
manuscripts. A supporting data point for ECRs as early adopters
is that they are responsible for 77% of 141 registered reports
that were submitted20. As ECRs are introduced to peer review as
codecheckers, they may transition into the role of peer-reviewer
over time. Overall, we see several opportunities and benefits to
setting up a new process for codechecking with a clear commit-
ment to openness and transparency, independent of the current
peer review process (see Openness dimension).

The codechecker could be a member of editorial staff; this is
the most controlled but also resource-intensive option. Such a
resource commitment would show that publishers are investing
in reproducibility, yet this commitment may be hard for small
publishers. These codecheckers could be fully integrated into
internal workflows. Credit for doing the codecheck is also
achieved, as it is part of their duties. By contrast, it is useful for
researchers to be publicly credited for their reviewing activity.
A regular review may be listed in public databases (e.g.,
ORCID, see Step 6 above, or commercial offerings such as
Publons, and ReviewerCredits); a codechecker could be simi-
larly listed. The codechecker community has over 20 volun-
teers who signed up in the last year, see https://github.com/
codecheckers/codecheckers/. Their motivations, mentioned in
the registration information, include: supporting reproducible
research and Open Science, improve coding skills, gaining
experience in helping scientists with their code, encouraging a
sharing culture, and learning from other people’s mistakes;
many are also motivated simply by curiosity. We see benefits to
an open shared list of codecheckers across journals rather than
a private in-house group, as this may allow for better matches
regarding expertise and workload sharing. This community can
establish CODECHECK as a viable option for independent
no-cost Open Access journals.

Page 6 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

217

Core principles
The workflow and variations outlined describe our current
views on how code could be checked. They are not immutable,
but we believe the following core principles underpin our
CODECHECK process:

1. Codecheckers record but don’t investigate or fix.
The codechecker follows the author’s instructions to run the
code. If instructions are unclear, or if code does not run, the
codechecker tells the author. We believe that the job of the
codechecker is not to fix these problems but simply to report
them to the author and await a fix. The level of documentation
required for third parties to reproduce a workflow is hard to
get right, and too often this uncertainty leads researchers to
give up and not document it at all. The conversation with a
codechecker fixes this problem.

2. Communication between humans is key.
Some code may work without any interaction, e.g. 21, but often
there are hidden dependencies that need adjusting for a particular
system. Allowing the codechecker to communicate directly
and openly with the author make this process as constructive
as possible; routing this conversation (possibly anonymously)
through a publisher would introduce delays and inhibit
community building.

3. Credit is given to codecheckers.
The value of performing a CODECHECK is comparable to that
of a peer review, and it may require a similar amount of time.
Therefore, the codechecker’s activity should be recorded, ideally
in the published paper. The public record can be realised by
publishing the certificate in a citable form (i.e., with a DOI),
by listing codecheckers on the journal’s website or, ideally, by
publishing the checks alongside peer review activities in public
databases.

4. Workflows must be auditable.
The codechecker should have sufficient material to validate the
workflow outputs submitted by the authors. Stark22 calls this
“preproducibility” and the ICERM report11 defines the level
“Auditable Research” similarly. Communities can establish their
own good practices or adapt generic concepts and practical
tools, such as publishing all building blocks of science in a
research compendium (cf. https://research-compendium.science/)
or “repro-pack”23. A completed check means that code could
be executed at least once using the provided instructions, and,
therefore, all code and data was given and could be investigated
more deeply or extended in the future. Ideally, this is a “one
click” step, but achieving this requires particular skills and a
sufficient level of documentation for third parties. Furthermore,
automation may lead to people gaming the system or reliance
on technology, which can often hide important details. All such
aspects can reduce the understandability of the material, so we
estimate our approach to codechecking, done without automation
and with open human communication, to be a simple way to
ensure long-term transparency and usefulness. We acknowledge
that others have argued in favour of bitwise reproducibility

because, in the long run, it can be automated (e.g., https://twitter.
com/khinsen/status/1242842759733665799), but until then we
need CODECHECK’s approach.

5. Open by default and transitional by disposition.
Unless there are strong reasons to the contrary (e.g., sensitive
data on human subjects), all code and data, both from author and
codechecker, will be made freely available when the certificate
is published. Openness is not required for the paper itself, to
accommodate journals in their transition to Open Access models.
The code and data publication should follow community good
practices. Ultimately we may find that CODECHECK activities
are subsumed within peer review.

Implementation
Register
To date we have created 25 certificates (Table 1) falling into
three broad themes: (1) classic and current papers from computa-
tional neuroscience, (2) COVID-19 modelling preprints, and (3)
GIScience.

The first theme was an initial set of papers used to explore the
concept of CODECHECK. The idea was to take well-known
articles from a domain of interest (Neuroscience). Our first
CODECHECK (certificate number 2020-001) was performed
before publication on an article for the journal GigaScience,
which visusalized the outputs from a family of supervised
classification algorithms.

The second theme was a response to the COVID-19 pandemic,
selecting papers that predicted outcomes. The checks were
solicited through community interaction or by our initiative
rather than requested from journals. Some certificates were since
acknowledged in the accepted papers24,25. In particular, we
codechecked the well-known Imperial college model of UK
lockdown procedures from March 2020, demonstrating that the
model results were reproducible26,27.

The third theme represents co-author DN’s service as a Repro-
ducibility Reviewer at the AGILE conference series, where the
Reproducible AGILE Initiative28 independently established a
process for reproducing workflows at the AGILE conference
series29. While using slightly different terms and infrastructure
(“reproducibility reports” are published on the Open Science
Framework instead of certificates on Zenodo) AGILE reproduc-
ibility reviews adhere to CODECHECK principles. A few checks
were also completed as part of peer reviews for GIScience
journals.

Annotated certificate and check metadata
After running the workflow, the codechecker writes a certificate
stating which outputs from the original article, i.e., numbers,
figures or tables, could be reproduced. This certificate is made
openly available so that everyone can see which elements were
reproduced and what limitations or issues were found. The
certificate links to code and data used by the codechecker,
allowing others to build on the work. The format of the

Page 7 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

218

Table 1. Register of completed certificates as of December 2020. An interactive version is available at http://codecheck.org.uk/
register.

Certificate Research area Description

2020-00130 Machine learning Code for benchmarking ML classification tool checked post acceptance of manuscript and before its
publication in Gigascience31.

2020-00232 Neuroscience Code written for this project checked by second project member as demonstration using paper from
1997 showing unsupervised learning from natural images33.

2020-00334 Neuroscience Code written for this project checked by second project member as demonstration using classic paper
on models of associative memory35.

2020-00436 Neuroscience Code written for this project checked by second project member as demonstration using classic paper
on cart-pole balancing problem37.

2020-00538 Neuroscience Check of independent reimplementation of spike-timing-dependent plasticity (STDP) model39
conducted as demonstration for this paper.

2020-00640 Neuroscience Check of independent reimplementation of a generalized linear integrate-and-fire neural model41
conducted as demonstration for this paper

2020-00742 Neuroscience Check of independent reimplementation of analysing spike patterns of neurons43 conducted as
demonstration for this paper.

2020-00844 COVID-19 Code for modelling of interventions on COVID-19 cases in the UK checked at preprint stage45 and later
published24.

2020-00946 COVID-19 Code for analysis of effectiveness of measures to reduce transmission of SARS-CoV-2 checked as
preprint47 and later published25.

2020-01027 COVID-19 Code for analysis of non-pharmaceutical interventions (Report 9) checked as a preprint48.

2020-01149 COVID-19 Code for modelling of COVID-19 spread across Europe was provided by authors and checked while
paper was in press50.

2020-01251 COVID-19 Code for modelling of COVID-19 spread across the USA was checked as preprint52 and later
published53.

2020-01321 Neuroscience Code for analysis of rest-activity patterns in people without con-mediated vision was checked as a
preprint54 after direct contact with the authors.

2020-01455 Neuroscience Code for analysis of perturbation patterns of neural activity was checked after publication as part of
publisher collaboration56.

2020-01557 Neuroscience Code for a neural network model for human focal seizures was checked after publication as part of
publisher collaboration58

2020-01659 GIScience Code for models demonstrating the Modifiable Aral Unit Problem (MAUP) in spatial data science60 was
checked during peer review.

2020-01761 GIScience Code for spatial data handling, analysis, and visualisation using a variety of R packages62 was checked
after peer review before publication.

2020-01863 GIScience AGILE conference reproducibility report using a demonstration data subset with cellular automaton for
modeling dynamic phenomena64.

2020-01965 GIScience AGILE conference reproducibility report with subsampled dataset for reachability analysis of suburban
transportation using shared cars66.

2020-02067 GIScience AGILE conference reproducibility report using a container for checking in-database windows operators
for processing spatio-temporal data68.

2020-02169 GIScience AGILE conference reproducibility report checking code for comparing supervised machine learning
models for spatial nominal entity recognition70.

2020-02271 GIScience AGILE conference reproducibility report checking code for visualising text analysis on intents and
concepts from geo-analytic questions72.

2020-02373 GIScience AGILE conference reproducibility report on analysis of spatial footprints of geotagged extreme weather
events from social media74.

2020-02475 Neuroscience Code for multi-agent system for concept drift detection in electromyography76 was checked during
peer review.

2020-02514 GIScience Adaptation and application of Local Indicators for Categorical Data (LICD) to archaeological data77 was
checked after peer review before publication.

Page 8 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

219

certificates evolved during the project, as we learnt to automate
different aspects of the certification. The metadata is stored in
a machine-readable structured file in YAML, the CODECHECK
configuration file codecheck.yml. The technical specifi-
cation of the CODECHECK configuration file is published at
https://codecheck.org.uk/spec/config/latest/. The configuration
file enables current and future automation of workflows and
meta-analyses.

Figure 4 shows pages 1–4 (of 10) of an example certificate to
check predictions of COVID-19 spread across the USA51,52.
Figure 4A shows the certificate number and its DOI, which
points to the certificate and any supplemental files on Zenodo.
The CODECHECK logo is added for recognition and to denote
successful reproduction. Figure 4B provides the key metadata
extracted from codecheck.yml; it names the paper that was
checked (title, DOI), the authors, the codechecker, when the
check was performed, and where code/data are available.
Figure 4C shows a textual summary of how the CODECHECK
was performed and key findings. Figure 4D (page 2 of the
certificate) shows the outputs that were generated based on the
MANIFEST of output files in the CODECHECK. It shows the
file name (Output), the description stating to which figure/table
each file should be compared in the original paper (Comment),
and the file size. Page 3 of the certificate, Figure 4E gives
detailed notes from the codechecker, here documenting what
steps were needed to run the code and that the code took about
17 hours to complete. Finally, page 4 of the certificate shows
the first output generated by the CODECHECK Figure 4F.
In this case, the figure matched figure 4 of 52. The remaining
pages of the certificate show other outputs and the comput-
ing environment in which the certificate itself was created (not
shown here).

Tools and resources
We use freely available infrastructure, GitHub and Zenodo, to
run our system. The codecheckers GitHub organisation at
https://github.com/codecheckers contains projects for managing
the project website, the codecheckers community and its
discussions, code repositories, and the main register of
CODECHECKs. Both the project website https://codecheck.
org.uk/ and the register at https://codecheck.org.uk/register are
hosted as GitHub pages. The register database is a single table
in CSV format that connects the certificate identifier with the
repository associated with a CODECHECK. Each of these
repositories, which currently can be hosted on GitHub or Open
Science Framework, contains the CODECHECK metadata file
codecheck.yml. The register further contains a column for
the type of check, e.g., community, journal, or conference, and
the respective GitHub issue where communications and assign-
ments around a specific check are organised. No information is
duplicated between the register and the metadata files. The
continuous integration infrastructure of GitHub, GitHub Actions,
is used to automate generation of the register. Zenodo is our
preferred open repository for storing certificates. It mints DOIs
for deposits and ensures long-term availability of all digital
artefacts related to the project. The CODECHECK community
on Zenodo is available at https://zenodo.org/communities/code-
check/. It holds certificates, the regularly archived register78, and
other material related to CODECHECK.

A custom R package, codecheck, automates repetitive
tasks around authoring certificates and managing the register.
The package is published at https://github.com/codecheckers/
codecheck under MIT license79. It includes scripts to deposit
certificates and related files to Zenodo using the R package
zen4R80 and for the register update process outlined above.
Codecheckers can ignore this package, and use their own
tools for creating and depositing the certificate. This flexibility
accommodates different skill sets and unforeseen technical
advances or challenges.

These tools and resources demonstrate that a CODECHECK
process can be managed on freely available platforms. Automa-
tion of some aspects may improve turnaround time. Our main
resource requirements are the humans needed for managing the
project and processes and the codecheckers. All contributions
currently rely on (partly grant-based) public funding and
volunteering.

Related work
The journal ACM Transactions on Mathematical Software
(TOMS) recently established a “Replicated Computational
Results” (RCR) review process81, where “replicable” is the same
as our use of “reproducible”. Fifteen RCR Reports have been
published so far (search on https://search.crossref.org/ with the term
“Replicated Computations Results (RCR) Report” on
2020-12-10). and the process is being extended extended to
the ACM journal Transactions on Modeling and Computer
Simulation. The TOMS RCR follows CODECHECK principles
1–4, although our work was independently developed of theirs.
The TOMS editorial81 shares similar concerns about selec-
tion of reviewers, as we discussed above. Unlike existing
CODECHECK certificates, the RCR reports undergo editorial
review. Publication of the RCR report recognises the efforts of
the reproducing person, while the potential for this motive to be
a conflict of interest is acknowledged. TOMS also recognises
reviewer activity in a partnership with Publons (see https://authors.
acm.org/author-services/publons).

This activity in the ACM journals can be seen as one possible
workflow within a CODECHECK system, and clearly shares
much in spirit. CODECHECK, however, specifically aims to
give codecheckers recognition as reviewers. In our view, the
reviewer role removes the possible conflict of interest while
keeping the public acknowledgement. Specific to the field of
mathematics, the RCR is also expected to apply a review of the
software itself if the system it runs on cannot be evaluated by
an independent party. The TOMS RCR creators concur with the
importance of communication, expect collaboration between
author and RCR reviewers, share the considerations around
reviewer selection, and also put trust in reviewer judgement
over numerical bit-wise perfection. A key difference is that for
TOMS RCR, authors opt-in with an RCR Review Request and
the RCR reports are published in the TOMS journal next to the
actual papers.

Several journals provide special article types for reproductions
of published papers. Information Systems has an invitation only
Reproducibility Section for articles describing the reproduc-
ibility efforts of published articles, which are co-authored by the

Page 9 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

220

Figure 4. Annotated certificate 2020–01251 (first four pages only).

Page 10 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

221

original authors and the reproducibility reviewer(s) (see https://
www.elsevier.com/journals/information-systems/0306-4379/
guide-for-authors).

Nature Machine Intelligence recently introduced a new type
of article, the reusability report82. Inspired by the detailed
and nuanced submissions to a reproducibility challenge, the
reusability report focuses on the exploration of robustness and
generalizability of the original paper’s claims82. This answers
the specific community’s challenges around computational
reproducibility and also values these kinds of contributions
as independent publications, which goes beyond the goals of
CODECHECK. The journal Cortex has a special article type
Verification Reports, which are actually about replication of
results and are very well designed/reasoned83. In a similar vein,
the CODECHECK certificates could also be published as a
special article type within journals.

Going beyond individual articles, the journal ReScience C
publishes only replications, also requiring open code and
replication by a third party. ReScience also relies on free
infrastructure (GitHub and Zenodo).

For research with high stakes, where reproduction would be too
weak and post-publication replication possibly too late because
of policy impact, Benjamin-Chung et al.84 propose internal
replication. A workflow that has undergone internal replication
would likely be of high quality and relatively easy to check.
Similarly, internal CODECHECKs may be used, with the same
limitations such as group think84, to ensure reproducibility
before submission. Such internal checks are professionalised in
local reproduction services, such as CISER R-squared or YARD,
or in communities such as Oxford’s code review network.

Gavis and Donoho85 propose a new discipline and infrastructure
for reproducible computational research. Their specific pack-
aging format, provenance record, and cryptographic Verifiable
Result Identifier would indeed provide excellent reproducibility.
However, the system is also complex and since its creation in
2011 we are not aware of any publisher using it; also, the
system is not open source. In comparison, CODECHECK is
less powerful but also much more flexible and less dependent
on specific tools or infrastructure. If data and code are deposited
properly, i.e., very unlikely to disappear, then the certificate’s DOI
is practically close to the cryptographic identifier.

Another platform for publishing results of reproductions is
SciGen.Report. It is a community-run independent platform
to foster communication on reproducibility. People can report
on fully, partially, or failed reproductions of articles after
publication.

CODECHECK is uniquely designed to be adopted across
journals or events and to build a community of codecheckers.
CODECHECK shares its interdisciplinary nature with other
community initiatives concerned with reproducibility awareness,
education, and support, such as ReproHack, Code Copilot, or
Papers with Code. The latter recently announced a collabora-
tion with the preprint server arXiv on providing data and code
supplements for machine learning manuscripts and runs a

reproducibility challenge. Likewise, different disciplines and
journals provide reproducibility checklists, e.g., science and
engineering86 or GIScience87, which naturally share some aspects
while addressing particularities as well as addressing research-
ers from different fields. Regarding the education and guidance
for authors, we see CODECHECK’s role as referencing and
linking educational efforts and helpful material, not as creating
and maintaining such content.

Limitations
Isn’t CODECHECK what peer review should be doing
already? On the surface, yes, but peer reviewers are overbur-
dened enough and asking them to do more work around peer
review is not likely to succeed. When an editor (Tsuyoshi
Miyakawa) requested raw data from n=41 authors before
reviewing, 21 authors withdrew their manuscripts; 19 of the 20
remaining articles were rejected after peer review88. Such basic
checks require effort from editors, yet they only rely on the
availability of data files and the content of the paper. These
availability checks can be enhanced by having more complex
CODECHECKs request the code and then execute it. This might
fall within idealistic expectations of peer review, but is rare.
Establishing a CODECHECK process acknowledges that peer
reviewing practices have been unable to adapt to the challenges
of computational papers. The concept of a CODECHECK, just
as the concepts of reproducible research and Open Science, may
be transitional by nature. If the activities described here as being
part of a CODECHECK are integrated into the publication
process the initiative will have succeeded.

Should CODECHECK requirements be more demanding?
CODECHECK by design does not require authors to provide
(and sustain) an eternally functional workflow nor suggests a
specific software stack or practical approach. Creating something
that anyone can reproduce has been called a fool’s errand and
we tend to agree. However, the package of data, code, and docu-
mentation collaboratively created by authors and codecheckers
is a snapshot of a working analysis that greatly increases the
likelihood of a successful reproduction and the possibility
that a workflow can be extended by third parties in the future,
if they have access to suitable resources and matching skill
set. Concrete implementations of CODECHECK workflows,
especially for specific disciplines, may reify much more helpful
guidelines for authors on how to create reproducibility pack-
ages. Our author-friendly “low bar” should not stay low forever,
but cultural change takes time and the encouragement and guid-
ance that CODECHECK, as part of the widely accepted peer
review concept, can provide may eventually allow the bar to be
raised much higher, e.g., with executable research compendia89,
“Whole Tales”90, or continuous analysis91. However, consid-
ering that missing artefacts and lack of documentation have
repeatedly been identified as key barriers to reproducibility
(e.g., 29,92), we would not underestimate the power of a
simple check. For example, ModelDB curation policies require
that only one figure need be manually reproduced93, but that
has not limited the usefulness nor success of the platform.

A codechecker does not fulfil the same role as a statistical
reviewer, as it is applied by some journals in the biomedical
domain (cf. 94,95). The statistical reviewer evaluates the

Page 11 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

222

appropriateness of statistical methods95 and can support topical
reviewers if, e.g., complex methods or sophisticated variants of
statistical tests are applied94. The codechecker may go equally
deep into the review, but only if they have the expertise and
time. We can imagine a tiered workflow where a codechecker
could, just as a conventional reviewer could, recommend a
detailed code review (see next paragraph) to the editor if they
come upon certain issues while examining the work.

A codechecker does not conduct a code review. Code reviews
are valuable to improve reproducibility and reusability, and their
proponents even believe they can improve the research96. Code
reviews, however, have quite different structural challenges
and require even more resources. That said, a well-reviewed
codebase is likely to be easier to codecheck, and the awareness
of high-quality code raised through CODECHECK may lead to
more support for code reviewing. Initiatives and journals that
conduct software reviews independent of a specific publication
or workflow include ROpenSci, PyOpenSci, and JOSS. Further-
more, the codechecker’s task list is intentionally not overloaded
with related issues such as ensuring proper citation of data and
software or depositing material in suitable repositories. Neverthe-
less, codecheckers are free to highlight these issues.

How are failures during checks handled? We do not yet
have a process for denoting if a reproduction fails, as our case-
studies were all successful. In the case that a journal adopts
CODECHECK for all submissions, the question remains as what
to do if a check fails, after exhausting efforts between author and
codechecker to reproduce the workflow. A negative comment in
a CODECHECK certificate or a failed check does not necessar-
ily mean the paper or research is bad (cf. discussion on negative
comments in 17). We doubt that publicly reporting failures
(i.e., the code would not run) will increase overall reproduc-
ibility, and may prohibit authors from sharing their work, which
is always more desirable than nothing shared. Therefore, we
recommend sharing interim reproduction efforts only with
the authors, even if that means that volunteer efforts may go
unnoticed if no certificate is published. Rosenthal et al.97 discuss
such incentives for different actors around the implementation
of reproducibility. We see CODECHECK as one way for organi-
sations to invest in reproducibility by creating incentives until
reproducible computations become the norm.

Who will pay for the compute time? For papers that take
significant compute time (days, not minutes), it is unclear who
will pay for it. One must carefully consider the sustainability
of rerunning computations and the environmental impact large
calculations, such as training machine learning models, have.
A pragmatic workaround is to request that authors provide a
“toy” example, or small dataset that can be quickly analysed to
demonstrate that the workflow runs correctly.

What about my proprietary software and sensitive data?
Given the prevalence of proprietary software, e.g MATLAB, we
pragmatically decided that we should accept code as long as we
could find a machine with suitable licences to run it. However,
this prohibits us from using open infrastructure for reproduc-
ibility (cf. 10,98) and requires the codechecker to have access to

that particular software. Non-open software also considerably
hampers reuse, especially by researchers from the global south.
Therefore, allowing proprietary software is a compromise that
should be reconsidered.

Solutions for proprietary and sensitive data exist. Authors can
provide synthetic data (cf. 99), some data can effectively be
redacted100, and publishers or independent entities can provide
infrastructure for sharing data and workflows confidentially101
or with access to derived results but not raw data99, i.e., data
enclaves102, or domains of reproducibility103.

Can’t someone cheat? Yes. We simply check that the code runs,
not that is correct or sound science. This “mechanical” test is
indeed a low bar. By having code and data openly deposited,
third parties can later examine the code, and we hope that
knowing the code will be open ensures that authors will not
cheat. It also allows researchers, potentially with new methods, to
look for errors. This is more effective than engaging in an arms
race on building methods to detect malicious intent now with
closed datasets and code. This is analogous to storing blood
samples of sport champions today to possibly detect doping
in the future with more sensitive methods (cf. 104). Another
comparison that helped us define the scope of a CODECHECK
is that we think of the codechecker as forensic photographer,
capturing details so that an investigator may later scrutinise
them.

Who’s got time for more peer review? Agree; codechecking
takes time that could otherwise be used for traditional peer
review. However, a CODECHECK is different from peer
review. First, the technical nature of a CODECHECK sets
clear expectations and thereby time budget compared to conven-
tional peer review. For example, authors are told what to provide
and the codechecker can be told when to stop. Codecheckers
can always directly ask the author when clarification is required,
thereby increasing efficiency. Second, the specific skill set of
a codechecker allows for different groups to participate in the
review process. ECRs might be attracted to learn more about
recent methods, peer review, and reproducibility practices.
Research Software Engineers who might not regularly be
involved in writing or reviewing papers might be interested in
increasing their connection with scholarly practices. An extra
codechecker may simplify the matchmaking an editor does
when identifying suitable reviewers for a submission, as
technical and topical expertise can be provided by different
people. Third, recall that CODECHECKs should always be
publicly available, unlike peer review reports. With code and
workflows, the codechecker’s feedback may directly impact
and improve the author’s work. The public certificates and
contributions provide peer recognition for the codechecker.
Fourth, we found that focusing on workflow mechanics and
interacting with the author makes reproductions educational. It
also is a different role and, as such, could be a welcome option
for researchers to give back their time to the community.

While such benefits are also part of idealistic peer review,
they are mostly hidden behind paraphrased anonymous
acknowledgement.

Page 12 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

223

Do workflows need to be codechecked multiple times? If a
paper is checked at the start of peer review, it might need
re-checking if the paper is modified during peer review. This
is inevitable, and happened to us51. This is desirable though, if
interactions between author, reviewer, and codechecker led to
improvements. Checking the manuscript the second time is likely
to be much less work than the first time.

What does it mean for a figure to be reproducible? Automati-
cally detecting if a codechecker’s results are “the same” as an
author’s is more challenging than it might appear. That is why
we do not require results to be identical for a CODECHECK
to pass but simply that the code runs and generates output
files that the author claims. Stochastic simulations mean that
often we will get different results, and even the same versions of
libraries can generate outputs that differ by operating system105.
While reproducibility practices can mitigate some of these
problems, e.g., by using a seed, the flexibility of the human
judgement is still needed, rather than bitwise reproducibility.
The codechecker is free to comment on visible differences in
outputs in their report.

Shouldn’t the next step be more revolutionary?
CODECHECK’s approach is to acknowledge short-comings
around computational reproducibility and to iteratively improve
the current system. It remains to be proven whether this
approach is welcomed broadly and if involving publishing
stakeholders helps to further the cause. We have discussed
more stringent rules at length, e.g. only considering fully free
and open source software, diamond Open Access journals, but
we eventually decided against them on the level of the princi-
ples. For the CODECHECK community process, documented
at https://codecheck.org.uk/guide/community-process, and the
volunteer codechecker community, these requirements can be
reconsidered.

We have deliberated requiring modern technologies to support
reproducibility (cf. 10), focusing instead on the human interface
and the judgement of experienced researchers and developers
as a more sustainable and flexible approach. All types of
research can adopt CODECHECK due to its flexible design.
CODECHECK could include automated scoring (e.g., 106),
yet automation and metrics bear new risks. The focus of the
CODECHECK principles on code execution allows journals
and publishers to innovate on financial models and peer review
practices at their own pace.

Conclusions and future work
CODECHECK works — we have created a considerable
number of certificates to demonstrate it. The creation of
certificates and interactions with authors and editors shaped the
principles and the workflow and also confirmed the approach
taken. This result corroborates findings from similar evalua-
tions of reproducible computational research in journals and
conferences. CODECHECKs increase transparency of the
checked papers and can contribute to building trust in research
findings. The set of shared principles and common name, through
recognition value, will allow researchers to judge the level of

scrutiny that results have faced. CODECHECK requires
direct acknowledgement of the codechecker’s contributions, not
indirectly via citations of reproductions or informal credit.

CODECHECK however harbours the same limitations as peer
review in general and is closely connected to larger disruptions
and challenges in scholarly communication7,107,108, including
the tensions between commercial publishing and reviewers’
often free labour, and a global pandemic that has jumbled up
academic publishing and exposed a broader general audience
to preprints109. Establishing CODECHECK workflows must be
seen as interconnected with much larger issues in research,
such as broken metrics or malpractice triggered by publication
pressure110,111. We certainly do not want the binary attribute of
“code works” to become a factor in bibliometric approaches
for performance assessments. While developed for the current
“paper”-centric publication process, the CODECHECK principles
would also work well with novel publication paradigms,
e.g., peer-reviewed computational notebooks112, iterative and
granular communication of research outputs, articles with
live-code113 such as eLife’s ERA, decentralized infrastructure
and public reviewer reputation systems114, and completely new
visions for scholarly communication and peer review, such as
described by Amy J. Ko in A modern vision for peer review. An
explicit segmentation of research steps could even make the
focus of a CODECHECK easier by only checking the “analysis”
sub-publication. The discovery of CODECHECKs could be
increased by depositing certificates into public databases of
reproductions, such as SciGen.Report. Public researcher pro-
files, such as ORCID, may consider different types of reviewer
activity to capture how independent code execution contributes
to science. Notably, the discussed limitations are largely
self-imposed for easier acceptance and evolutionary integra-
tion, as to not break the current system and increase demands
gradually without leaving practitioners behind.

A CODECHECK system, even if temporarily adopted as a
sustainable transition towards more open publication and review
practices, can contribute to increased trust in research outputs.
Introducing CODECHECK should be informed by lessons
learned from (introducing) open peer review15. Our conversations
with publishers and editors indicate a willingness to adopt open
practices like these, but that it is hard to innovate with legacy
infrastructure and established practices.

More reproducible practices initiated by CODECHECKs
could lead communities to reach a state where authors provide
sufficient material and reviewers have acquired sufficient skills
that peer reviewers will generally conduct a CODECHECK-
level of checking; only in especially sophisticated cases will
a specialised codechecker be needed. The main challenge
for us remains getting journals to embrace the idea behind
CODECHECK and to realise processes that conform to the
principles, whether or not they use CODECHECK by name.
We would be keen to use the flexibility of the principles and
cooperate with journals to learn more about the advantages
and yet unclear specific challenges – e.g do CODECHECKs
really work better with open peer review? To facilitate the
adoption, the CODECHECK badge is, intentionally, not branded

Page 13 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

224

beyond the checkmark and green colour and simply states “code
works”.

Future CODECHECK versions may be accompanied by studies
to ensure codechecking does not fall into the same traps as peer
review did16 and to ensure positive change within the review
system. This cultural change, however, is needed for the
valuation of the efforts that go into proper evaluation of papers.
Journals can help us to answer open questions in our system:
What are crucial decisions or pain points? Can authors retract
code/data once a CODECHECK has started? What variants
of CODECHECKs will be most common? How will open
CODECHECKs influence or codevelop with the scope and
anonymity of conventional review over time?

The question of training codecheckers is also relevant. We
expect a mentoring scheme within the CODECHECK commu-
nity (experienced codecheckers will provide on-the-job training
or serve as fall-back advisors). Codecheckers may also be found
by collaborating with reproducible research initiatives such
as ReproHack, ReproducibiliTea,115, and Repro4Everyone,116.
The initial reaction of researchers to these ideas shows that
scholarly peer review should continue on the path towards
facilitating sharing and execution of computational workflows.

Data availability
Zenodo: codecheckers/register: CODECHECK Register Deposit
January 2021 http://doi.org/10.5281/zenodo.448655978.

This project contains the following underlying data:

• register.csv. List of all CODECHECK certificates
with references to repositories and reports.

Data are available under the terms of the Creative Commons
Attribution Share Alike license (CC-BY-SA 4.0 International).

Software availability
Codecheckers GitHub organisation: https://github.com/
codecheckers

CODECHECK community on Zenodo: https://zenodo.org/
communities/codecheck

codecheck R package: https://github.com/codecheckers/
codecheck

Archived R package as at time of publication: http://doi.org/
10.5281/zenodo.452250779

License: MIT

Acknowledgements
We are grateful to the following individuals for discussions
regarding the work presented here: Andy Collings, Melissa
Harrison, Giuliano Maciocci, Naomi Penfold, Emmy Tsang
(eLife), Rebecca Kirk (PLOS Computational Biology), Scott
Edmunds (GigaScience), and Andrew Hufton (Scientific Data).
Iain Davies and Yuhao (Sebastian) Wang developed code and
example certificates. We thank Antonio Páez (Journal of
Geographical Systems) for enabling CODECHECKs, Carlos
Granell and Frank Ostermann for contributing certificates as
reproducibility reviewers at the AGILE conference, and all
authors of auditable workflows for their participation. We thank
Celeste R. Brennecka from the Scientific Editing Service,
University of Münster, for her editorial review.

References

1. Marwick B: How computers broke science – and what we can do to fix it.
2015.
Reference Source

2. Buckheit JB, Donoho DL: WaveLab and Reproducible Research. In Anestis
Antoniadis and Georges Oppenheim, editors, Wavelets and Statistics. number
103 in Lecture Notes in Statistics, Springer New York, 1995; 55–81.
Publisher Full Text

3. Claerbout JF, Karrenbach M: Electronic documents give reproducible
research a new meaning. In SEG Technical Program Expanded Abstracts
1992. SEG Technical Program Expanded Abstracts, Society of Exploration
Geophysicists, 1992; 601–604.
Publisher Full Text

4. Vines TH, Albert AYK, Andrew RL, et al.: The availability of research data
declines rapidly with article age. Curr Biol. 2014; 24(1): 94–97.
PubMed Abstract | Publisher Full Text

5. Barnes N: Publish your computer code: it is good enough. Nature. 2010;
467(7317): 753.
PubMed Abstract | Publisher Full Text

6. Markowetz F: Five selfish reasons to work reproducibly. Genome Biol. 2015;
16: 274.
PubMed Abstract | Publisher Full Text | Free Full Text

7. Fyfe A: Mission or money? Septentrio Conference Series. Keynote at 14th Munin
Conference on Scholarly Publishing 2019. 2019.
Publisher Full Text

8. Barba LA: Terminologies for Reproducible Research. arXiv: 1802.03311 [cs].
2018.
Reference Source

9. Jupyter P, Bussonnier M, Forde J, et al.: Binder 2.0 - Reproducible, interactive,
sharable environments for science at scale. Proceedings of the 17th Python in
Science Conference. 2018; 113–120.
Publisher Full Text

10. Konkol M, Nüst D, Goulier L: Publishing computational research - a
review of infrastructures for reproducible and transparent scholarly
communication. Res Integr Peer Rev. 2020; 5(1): 10.
PubMed Abstract | Publisher Full Text | Free Full Text

11. Stodden V, Bailey DH, Borwein J, et al.: Setting the Default to Reproducible:
Reproducibility in Computational and Experimental Mathematics.
Technical report, The Institute for Computational and Experimental Research in
Mathematics, 2013.
Reference Source

12. Christian TM, Gooch A, Vision T, et al.: Journal data policies: Exploring how
the understanding of editors and authors corresponds to the policies
themselves. PLoS One. 2020; 15(3): e0230281.
PubMed Abstract | Publisher Full Text | Free Full Text

13. Nosek BA, Spies JR, Motyl M: Scientific Utopia: II. Restructuring Incentives
and Practices to Promote Truth Over Publishability. Perspect Psychol Sci.
2012; 7(6): 615–631.
PubMed Abstract | Publisher Full Text

14. Nüst D: CODECHECK certificate 2020-025. Zenodo. 2020.
Publisher Full Text

15. Ross-Hellauer T, Görögh E: Guidelines for open peer review implementation.
Res Integr Peer Rev. 2019; 4(1): 4.
PubMed Abstract | Publisher Full Text | Free Full Text

16. Tennant JP, Ross-Hellauer T: The limitations to our understanding of peer

Page 14 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

225

review. Res Integr Peer Rev. 2020; 5(1): 6.
PubMed Abstract | Publisher Full Text | Free Full Text

17. Quintana D, Heathers J: Everything Hertz 123: Authenticated anonymity
(with Michael Eisen). Open Science Framework. 2020.
Publisher Full Text

18. Bouffler B: Keynote at deRSE 2019: Delivering on the promise of Research
Computing. TIB AV- PORTAL. Video recording published in TIB AV-PORTAL. 2019.
Publisher Full Text

19. Roesch EB, Rougier N: New journal for reproduction and replication results.
Nature. 2020; 581(7806): 30.
PubMed Abstract | Publisher Full Text

20. Chambers C: Registered Reports. Publisher: OSF. 2019.
Reference Source

21. Davies I: CODECHECK certificate 2020-013. Zenodo. 2020.
Publisher Full Text

22. Stark PB: Before reproducibility must come preproducibility. Nature. 2018;
557(7707): 613.
PubMed Abstract | Publisher Full Text

23. Barba LA: Praxis of Reproducible Computational Science. 2018.
Publisher Full Text

24. Davies NG, Kucharski AJ, Eggo RM, et al.: Effects of non-pharmaceutical
interventions on COVID-19 cases, deaths, and demand for hospital services
in the UK: a modelling study. Lancet Public Health. 2020; 5(7): e375–e385.
PubMed Abstract | Publisher Full Text | Free Full Text

25. Kucharski AJ, Klepac P, Conlan AJK, et al.: Effectiveness of isolation, testing,
contact tracing, and physical distancing on reducing transmission of SARS-
CoV-2 in different settings: a mathematical modelling study. Lancet Infect
Dis. 2020; 20(10): 1151–1160.
PubMed Abstract | Publisher Full Text | Free Full Text

26. Chawla DS: Critiqued coronavirus simulation gets thumbs up from code-
checking efforts. Nature. 2020; 582(7812): 323–324.
PubMed Abstract | Publisher Full Text

27. Eglen SJ: CODECHECK certificate 2020-010. Zenodo. 2020.
Publisher Full Text

28. Nüst D, Ostermann F, Hofer B, et al.: Reproducible Publications at AGILE
Conferences. 2019.
Reference Source

29. Nüst D, Ostermann FO, Granell C, et al.: Improving reproducibility
of geospatial conference papers – lessons learned from a first
implementation of reproducibility reviews. Septentrio Conference Series. 2020.
Publisher Full Text

30. Eglen SJ: CODECHECK certificate 2020-001. Zenodo. 2020.
Publisher Full Text

31. Piccolo SR, Lee TJ, Suh E, et al.: ShinyLearner: A containerized benchmarking
tool for machine-learning classification of tabular data. Gigascience. 2020;
9(4): giaa026.
PubMed Abstract | Publisher Full Text | Free Full Text

32. Eglen SJ, Nüst D: CODECHECK certificate 2020-002. Zenodo. 2020.
Publisher Full Text

33. Hancock PJB, Baddeley RJ, Smith LS: The principal components of natural
images. Network: Computation in Neural Systems. 1992; 3(1): 61–70.
Publisher Full Text

34. Daniel N: CODECHECK certificate 2020-003. Zenodo. 2020.
Publisher Full Text

35. Hopfield JJ: Neural networks and physical systems with emergent collective
computational abilities. Proc Natl Acad Sci U S A. 1982; 79(8): 2554.
PubMed Abstract | Publisher Full Text | Free Full Text

36. Nüst D: CODECHECK certificate 2020-004. Zenodo. 2020.
Publisher Full Text

37. Barto AG, Sutton RS, Anderson CW: Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Trans Syst Man Cybern. 1983;
SMC-13(5): 834–846.
Publisher Full Text

38. Eglen SJ: CODECHECK certificate 2020-005. Zenodo. 2020.
Publisher Full Text

39. Larisch R: [Re] Connectivity reflects coding a model of voltage-based STDP
with homeostasis. ReScience C. 2019; 5(3).
Publisher Full Text

40. Eglen SJ: CODECHECK certificate 2020-006. Zenodo. 2020.
Publisher Full Text

41. Detorakis G: [Re] A Generalized Linear Integrate-And-Fire Neural Model
Produces Diverse Spiking Behaviors. ReScience C. 2017; 3(1): #7.
Publisher Full Text

42. Eglen SJ: CODECHECK certificate 2020-007. Zenodo. 2020.
43. Hathway P, Goodman DFM: [Re] Spike Timing Dependent Plasticity Finds The

Start Of Repeating Patterns In Continuous Spike Trains. ReScience C. 2018;
4(1): #6.
Publisher Full Text

44. Eglen SJ: CODECHECK certificate 2020-008. Zenodo. 2020.
Publisher Full Text

45. Davies NG, Kucharski AJ, Eggo RM, et al.: Effects of non-pharmaceutical
interventions on COVID-9 cases, deaths, and demand for hospital services
in the UK: a modelling study. 2020.
Reference Source

46. Eglen SJ: CODECHECK certificate 2020-009. Zenodo. 2020.
Publisher Full Text

47. Kucharski AJ, Klepac P, Conlan AJK, et al.: Effectiveness of isolation, testing,
contact tracing and physical distancing on reducing transmission of
sars-cov-2 in different settings: a mathematical modelling study. 2020.
Reference Source

48. Ferguson N, Laydon D, Nedjati Gilani G, et al.: Report 9: Impact of non-
pharmaceutical interventions (NPIs) to reduce COVID19 mortality and
healthcare demand. 2020.
Publisher Full Text

49. Eglen SJ: CODECHECK certificate 2020-011. Zenodo. 2020.
Publisher Full Text

50. Flaxman S, Mishra S, Gandy A, et al.: Estimating the effects of
non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020;
584(7820): 257–261.
PubMed Abstract | Publisher Full Text

51. Eglen SJ: CODECHECK certificate 2020-012. Zenodo. 2020.
Publisher Full Text

52. Unwin H, Mishra S, Bradley VC, et al.: Report 23: State-level tracking of
COVID-19 in the United States. 2020.
Publisher Full Text

53. Unwin HJT, Mishra S, Bradley VC, et al.: State-level tracking of COVID-19 in the
United States. Nat Commun. 2020; 11(1): 6189.
PubMed Abstract | Publisher Full Text | Free Full Text

54. Spitschan M, Garbazza C, Kohl S, et al.: Rest-activity cycles and melatonin
phase angle of circadian entrainment in people without cone-mediated
vision. bioRxiv. 2020.
Publisher Full Text

55. Davies I: CODECHECK certificate 2020-014. 2020.
Publisher Full Text

56. Sadeh S, Clopath C: Patterned perturbation of inhibition can reveal the
dynamical structure of neural processing. elife. 2020; 9: e52757.
PubMed Abstract | Publisher Full Text | Free Full Text

57. Davies I: CODECHECK certificate 2020-015. See file LICENSE for license of the
contained code. 2020.
Publisher Full Text

58. Liou J, Smith EH, Bateman LM, et al.: A model for focal seizure onset,
propagation, evolution, and progression. eLife. 2020; 9: e50927.
PubMed Abstract | Publisher Full Text | Free Full Text

59. Nüst D: CODECHECK certificate 2020-016. 2020.
Publisher Full Text

60. Brunsdon C, Comber A: Opening practice: supporting reproducibility and
critical spatial data science. J Geogr Syst. 2020.
Publisher Full Text

61. Nüst D: CODECHECK certificate 2020-017. 2020.
http://www.doi.org/10.5281/zenodo.4003848

62. Bivand RS: Progress in the r ecosystem for representing and handling
spatialdata. J Geogr Syst. 2020.
Publisher Full Text

63. Nüst D: Reproducibility review of: Integrating cellular automata and
discrete global grid systems: a case study into wildfire modelling. 2020.
Publisher Full Text

64. Hojati M, Robertson C: Integrating cellular automata and discrete global
grid systems: a case study into wildfire modelling. AGILE: GIScience Series.
2020; 1: 1–23.
Publisher Full Text

65. Nüst D, Granell C: Reproducibility review of: What to do in the meantime: A
service coverage analysis for parked autonomous vehicles. 2020.
Publisher Full Text

66. Illium S, Friese PA, Müller R, et al.: What to do in the meantime: A service
coverage analysis for parked autonomous vehicles. AGILE: GIScience Series.
2020; 1: 1–15.
Publisher Full Text

67. Nüst D, Ostermann F: Reproducibility review of: Window operators for
processing spatio- temporal data streams on unmanned vehicles. 2020.
Publisher Full Text

68. Werner T, Brinkhoff T: Window operators for processing spatio-temporal
data streams on unmanned vehicles. AGILE: GIScience Series. 2020; 1: 1–23.
Publisher Full Text

69. Ostermann F, Nüst D: Reproducibility review of: Comparing supervised
learning algorithms for spatial nominal entity recognition. 2020.
Publisher Full Text

70. Medad A, Gaio M, Moncla L, et al.: Comparing super- vised learning
algorithms for spatial nominal entity recognition. AGILE: GIScience Series.
2020; 1: 1-18.
Publisher Full Text

71. Nüst D: Reproducibility review of: Extracting interrogative intents and

Page 15 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

226

concepts from geo-analytic questions. 2020.
Publisher Full Text

72. Xu H, Hamzei E, Nyamsuren E, et al.: Extracting interrogative intents and
concepts from geo-analytic questions. AGILE: GIScience Series. 2020; 1: 1–21.
Publisher Full Text

73. Ostermann F, Nüst D: Reproducibility review of: Tracking hurricane dorian
in gdelt and twitter. 2020.
Publisher Full Text

74. Owuor I, Hochmair HH, Cvetojevic S: Tracking hurricane dorian in GDELT and
twitter. AGILE: GIScience Series. 2020; 1: 1–18.
Publisher Full Text

75. Eglen SJ: CODECHECK certificate 2020-024. Zenodo. 2020.
Publisher Full Text

76. Vieira DM, Fernandes C, Lucena C, et al.: Driftage: a multi-agent system
for concept drift detection and an application on electromyography.
Gigascience. (under review), 2020.
Reference Source

77. Carrer F, Kossowski TM, Wilk J, et al.: The application of Local Indicators for
Categorical Data (LICD) to explore spatial dependence in archae- ological
spaces. J Archaeol Sci. 2021; 126: 105306.
Publisher Full Text

78. Nüst D, Eglen S, Davies L: codecheckers/register: CODECHECK Register
Deposit January 2021. (Version 2021-01) [Data set]. Zenodo. 2021.
http://www.doi.org/10.5281/zenodo.4486559

79. Eglen S, Nüst D: codecheckers/codecheck: codecheck R package version
0.1.0. 2021.
Reference Source

80. Blondel E: zen4R: Interface to ’Zenodo’ REST API. R package version 0.4-2.
2020.
Reference Source

81. Heroux MA: Editorial: ACM TOMS Replicated Computational Results
Initiative. ACM Trans Math Softw. 2015; 41(3): 13: 1–13: 5.
Publisher Full Text

82. Research, reuse, repeat. Nat Mach Intell. 2020; 2(12): 729–729.
Publisher Full Text

83. Chambers CD: Verification Reports: A new article type at Cortex. Cortex.
2020; 129: A1–A3.
Publisher Full Text

84. Benjamin-Chung J, Colford JM, Mertens A, et al.: Internal replication of
computational workflows in scientific research. Gates Open Res. 2020; 4: 17.
PubMed Abstract | Publisher Full Text | Free Full Text

85. Gavish M, Donoho D: A Universal Identifier for Computational Results.
Procedia Comput Sci. 2011; 4: 637–647.
Publisher Full Text

86. Rosenberg DE, Filion Y, Teasley R, et al.: The Next Frontier: Making Research
More Reproducible. J Water Resour Plann Manage. 2020; 146(6): 01820002.
Publisher Full Text

87. Nüst D, Ostermann F, Sileryte R, et al.: AGILE Reproducible Paper Guidelines.
OSF. 2019.
Publisher Full Text

88. Miyakawa T: No raw data, no science: another possible source of the
reproducibility crisis. Mol Brain. 2020; 13(1): 24.
Publisher Full Text

89. Nst D, Konkol M, Pebesma E, et al.: Opening the Publication Process with
Executable Research Compendia. D-Lib Magazine. 2017; 23(1/2).
Publisher Full Text

90. Brinckman A, Chard K, Gaffney N, et al.: Computing environments for
reproducibility: Capturing the “Whole Tale”. Future Gener Comput Syst. 2018.
Publisher Full Text

91. Beaulieu-Jones BK, Greene CS: Reproducibility of computational workflows
is automated using continuous analysis. Nat Biotechnol. 2017; 35(4): 342–346.
ISSN 1546-1696.
PubMed Abstract | Publisher Full Text | Free Full Text

92. Stagge JH, Rosenberg DE, Abdallah AM, et al.: Assessing data availability and
research reproducibility in hydrology and water resources. Sci Data. 2019;
6(1): 190030. ISSN 2052-4463.
PubMed Abstract | Publisher Full Text | Free Full Text

93. McDougal RA, Bulanova AS, Lytton WW: Reproducibility in Computational
Neuroscience Models and Simulations. IEEE Trans Biomed Eng. 2016; 63(10):
2021–2035. ISSN 0018-9294.
PubMed Abstract | Publisher Full Text | Free Full Text

94. Petrovečki M: The role of statistical reviewer in biomedical scientific
journal. Biochemia Medica. 2009; 19(3): 223–230.
Publisher Full Text

95. Greenwood DC, Freeman JV: How to spot a statistical problem: advice for a

non-statistical reviewer. BMC Med. 2015; 13(1): 270. ISSN 1741-7015.
PubMed Abstract | Publisher Full Text | Free Full Text

96. Petre M, Wilson G: Code Review For and By Scientists. arXiv: 1407.5648 [cs].
arXiv: 1407.5648. 2014.
Reference Source

97. Rosenthal P, Mayer R, Page K, et al.: Incentives and barriers to
reproducibility: Investments and returns. In Juliana Freire, Norbert Fuhr,
and Andreas Rauber, editors, Reproducibility of data-oriented experiments in e-
Science. of Dagstuhl reports. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2016; 6: 148–151. ISSN: 2192-5283.

98. Perkel JM: Make code accessible with these cloud services. Nature. 2019;
575(7781): 247–248.
PubMed Abstract | Publisher Full Text

99. Shannon J, Walker K: Opening GIScience: A process-based approach. Int J
Geogr Inf Sci. 2018; 32(10): 1911–1926. ISSN 1365-8816.
Publisher Full Text

100. O’Loughlin J, Raento P, Sharp JP, et al.: Data ethics: Pluralism, replication,
conflicts of interest, and standards in Political Geography. Political
Geography. 2015; 44: A1–A3. ISSN 0962-6298.
Publisher Full Text

101. Pérignon C, Gadouche K, Hurlin C, et al.: Certify reproducibility with confidential
data. Science. 2019; 365(6449): 127–128. ISSN 0036-8075, 1095-9203.
PubMed Abstract

102. Foster I: Research Infrastructure for the Safe Analysis of Sensitive Data.
Ann Am Acad Pol Soc Sci. 2018; 675(1): 102–120. ISSN 0002-7162.
Publisher Full Text

103. Harris R, O’Sullivan D, Gahegan M, et al.: More bark than bytes? Reflections
on 21+ years of geocomputation. Environ Plan B Urban Anal City Sci. 2017;
44(4): 598–617. ISSN 2399-8083.
Publisher Full Text

104. Quintana D, Heathers J: Everything Hertz 97: Slow science. Open Science
Framework. 2019.
Publisher Full Text

105. Gronenschild EHBM, Habets P, Jacobs HIL, et al.: The effects of FreeSurfer
version, workstation type, and macintosh operating system version on
anatomical volume and cortical thickness measurements. PLoS One. 2012;
7(6): e38234. ISSN 1932-6203.
PubMed Abstract | Publisher Full Text | Free Full Text

106. Menke J, Roelandse M, Ozyurt B, et al.: The Rigor and Transparency Index
Quality Metric for Assessing Biological and Medical Science Methods.
iScience. 2020; 23(11): 101698. ISSN 2589-0042.
PubMed Abstract | Publisher Full Text | Free Full Text

107. Eglen SJ, Mounce R, Gatto L, et al.: Recent developments in scholarly
publishing to improve research practices in the life sciences. Emerg Top Life
Sci. 2018; 2(6): 775–778. ISSN 2397-8554, 2397-8562.
PubMed Abstract | Publisher Full Text | Free Full Text

108. Tennant JP, Crane H, Crick T, et al.: Ten Hot Topics around Scholarly
Publishing. Publications. 2019; 7(2): 34.
Publisher Full Text

109. Munafo M: What you need to know about how coronavirus is changing
science. 2020.
Reference Source

110. Piwowar H: Altmetrics: Value all research products. Nature. 2013; 493(7431):
159. ISSN 1476-4687.
PubMed Abstract | Publisher Full Text

111. Nosek BA, Alter G, Banks GC, et al.: SCIENTIFIC STANDARDS. Promoting an
open research culture. Science. 2015; 348(6242): 1422–1425. ISSN 0036-8075,
1095-9203.
PubMed Abstract | Publisher Full Text | Free Full Text

112. EarthCube: New EarthCube Peer-Reviewed Jupyter Notebooks. Now
Available. 2020.
Reference Source

113. Perkel JM: Pioneering ‘live-code’ article allows scientists to play with each
other’s results. Nature. 2019; 567(7746): 17–18.
PubMed Abstract | Publisher Full Text

114. Tenorio-Fornés A, Jacynycz V, Llop-Vila D, et al.: Towards a Decentralized
Process for Scientific Publication and Peer Review using Blockchain
and IPFS. 2019. ISBN 978-0-9981331-2-6. Accepted: 2019-01-03T00:29:12Z.
Publisher Full Text

115. Fitzgibbon L, Brady D, Haffey A, et al.: Brewing up a storm: developing Open
Research culture through ReproducibiliTea. Report. Central Archive at the
University of Reading. 2020.
Publisher Full Text

116. Auer S, Haelterman N, Weissgerber T, et al.: Reproducibility for everyone:
a community-led initiative with global reach in reproducible research
training. OSF Preprints. 2020.
Publisher Full Text

Page 16 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

227

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 21 April 2021

https://doi.org/10.5256/f1000research.54932.r82472

© 2021 Gibson S. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Sarah Gibson
The Alan Turing Institute, London, UK

Paper Summary
This paper outlines a set of principles and a community of practice for verifying computational
analyses can be run and research artefacts reproduced as part of, or in addition to, traditional
peer review processes. The ongoing scientific reproducibility crisis and current lack of many (or
any) standards for checking computational research in the publishing industry makes this an
important, new framework to share with the community.
The authors demonstrate a deep and thoughtful knowledge of the cultural barriers surrounding
such technological checks for peer review, such as time, expertise, and bitwise comparative
reproducibility. They acknowledge that the specific incarnation of the CODECHECK practice
outlined in this paper is limited to provide a low barrier for entry in order to encourage adoption,
but do detail the scope in which such a workflow could be adapted and built upon to raise that bar
and perform more stringent checks. Specifically, the principles are not technology-based to allow
for flexibility in the complexity and domain of computational research to be checked. I particularly
appreciated the authors’ recommendation/suggestion that CODECHECKs become a platform for
engaging Early Career Researchers in the peer review process.
Alongside CODECHECK’s own workflows (which are openly published on GitHub and Zenodo), the
paper outlines many similar and related initiatives that fall within the CODECHECK framework
providing a wealth of examples for the community to draw inspiration from when designing and
applying their own CODECHECK workflows.

Is the rationale for developing a new method clearly explained?
The authors show a deep knowledge of the pitfalls of traditional peer review of static research
artefacts and clearly identify and outline the rationale for a peer review-like system capable of
assessing computation-based research.

Is the description of the method technically sound?
I’m going to answer a slightly different question of “Is the description of the method culturally
sound?” This is because the authors have intentionally not provided a technological methodology
for completing a CODECHECK so as to avoid vendor lock-in (e.g. cloud platform providers) and to

Page 17 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

228

provide flexibility for applying the methodology to a range of computational research domains.
Instead, the focus of the methodology is on building a community of practice around having code
mechanically checked by someone with comparable technical expertise from outside the project.
The authors demonstrate a considerate knowledge of the burden of verifying computational
reproducibility on both authors and peer reviewers and aim, not to increase this burden, but to
provide an entry point into a world where checking research code can be run and produces the
artefacts as they are presented in the paper is normalised. I think their recommended approach
focussing on communication between codecheckers and authors, codecheckers will check and not
fix, and codecheckers being an additional role to the traditional peer reviewer will aid early
adoption of this framework.

Are sufficient details provided to allow replication of the method development and its use
by others?
The concept of CODECHECK is intentionally presented as a set of principles and example
workflows, as opposed to fixed, step-by-step actions, to allow for flexibility across computational
complexity and research domains. The principles, example workflow, and potential variations
under this framework are explained in depth and examples of workflows that fall under the
CODECHECK framework from other publishers and/or conferences are provided, alongside
CODECHECK’s own community. From this wealth of detail, I believe that others would be able to
replicate, adapt and apply a CODECHECK-like workflow in their journal or community.

Are the conclusions about the method and its performance adequately supported by the
findings presented in this article?
It is encouraging to see that the community feedback from authors and publishers shaped the
workflow and principles that uphold CODECHECK and a number of certificates have already been
issued under this framework. This shows that the workflow of a CODECHECK as outlined in the
paper is achievable in partnership with current peer review operations. However, I would like to
see the impact of the CODECHECK certificates issued. Is there any community feedback on the
transparency and reusability of research published with CODECHECK certificates? This is perhaps
too big of an ask this early in the initiative as research reuse and citations are independent factors
of the publication and peer review of this specific paper - but I’d still be interested in any insights
the authors have to offer on this topic.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
No source data required

Page 18 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

229

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: I am a champion of reproducible research and an operator of mybinder.org
which was explicitly mentioned in the paper.

Reviewer Expertise: As a Research Software Engineer, I don't have a specific area of research any
more. I have skills and expertise in software best practices, computational reproducibility and
cloud computing infrastructure, which I have gained through the open source communities
Project Binder (running mybinder.org) and The Turing Way (a pedagogical resource which
includes a volume on reproducibility) alongside working on a range of projects within the Alan
Turing Institute.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 19 April 2021

https://doi.org/10.5256/f1000research.54932.r82470

© 2021 Rougier N. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Nicolas P. Rougier
Inria Bordeaux Sud-Ouest, Talence, France

In this article, authors propose to implement a procedure to check for the code accompanying a
submission to a journal. To do so, they describe a pipeline made of 6 steps that ultimately lead to
the delivery of a code check certificate meaning that someone external to the author's lab has
managed to re-run the code. At this point, no checking that the results are correct is necessary.
The authors already
issued several codecheck certificates in different disciplines. I find the idea really nice and certainly
necessary but I've a few questions (even though some of them are already addressed in the
"limitations" section). Given the structure of the paper, I'll just list my questions here:

How does CODECHECK compare to ACM Artifact reviews badges?
(https://www.acm.org/publications/policies/artifact-review-and-badging-current)

○

What would be the incentive for someone to code check the code? Being aware of the
increasing difficulty in finding reviewers, I don't think it would be easy to recruit people to
perform a task that can rapidly become very technical and time consuming.

○

How do you handle the case when specific hardware is necessary (e.g. NVidia GPU)? Is it
documented somewhere such that code-checkers might first verify if they have the
necessary hardware to run the code?

○

Page 19 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

230

How do you establish a check has failed? For example, what happens if a code-checker gets
a segfault (for some unknown reason) and the author is unable to help. Is it deemed failed?

○

Who will pay for the computing resources needed to run heavy simulations and/or to
acquire necessary software such as e.g. Matlab? When a simulation consumes a lot of
resources, it might wise to give the checker access to computing resources. This could be
paid for by the journal.

○

I did not see in the report example a description of the environment necessary to run the
software. How did you solve the "dependency hell"? Since the code might break at some
point in the future because of incompatibility in some libraries or environments, it would be
necessary to have a mechanism describing the running environment such that it can be re-
run later.

○

What do you recommend if the reviews are both excellents but the code check failed? Does
this mean the paper is blocked until code check passes or rejected or else?

○

The code check proposal is close to some extents to the Journal of Open Science Software
where each reviewer is assigned a list of things to check during the review. Do authors
consider this pipeline when establishing their own pipeline?

○

To what extent the codecheck certificate can be updated automatically via some kind of
"manual continuous-integration"? I mean that when reading a paper online, would it be
possible to click a button to test if the code still runs considering the latest versions of
libraries? (for example, the certificate has been issued for Python 2 but I want to know if this
is usable with Python 3).

○

When you look at journals advertising open data policies, it is unfortunately not rare to find
articles in these same journals without the actual data. Do you have some suggestion for
educating editors to actually enforce the code check a journal adopt it?

○

Some suggestions:

The badge that is delivered would need some time information since the check is valid at
one point in time (with a given software stack) and does not guarantee future runs.

○

For specialized journals, you could consider to offer a common generic environment where
a code could be first tested. It this fails, then you would need only to slightly modify the
environment to add missing dependencies. For example, in neuroscience, a Neuro Debian
would probably suit the needs of a large number of models.

○

- As editor-in-chief of ReScience C, I would like to inform authors that the journal now
accepts "reproduction report". The idea it to try to re-run the code accompanying a
published article and to report if it succeeded or failed. Our own procedure to check for
reproduction is not standardized and we'll certainly benefit from the code check initiative.

○

Overall, it's nice to have a clean description of a pipeline to check for code even though some

Page 20 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

231

questions need to be addressed. Also, I'm not too confident that journals will adopt it immediately
and I'm afraid such initiative will take time to be generalized. But we have to start somewhere.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational Neuroscience, Open Science

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Comments on this article
Version 1

Reader Comment 01 Apr 2021
Cassio Amorim, CJS Inc., SciGen.Report, Kyoto, Japan

Very informative pre-print. I have 3 points to raise that the authors may or may not find useful, 2
suggestions and 1 comment, which the authors may adopt or ignore as they see fit.

1. Regarding Fig. 1, I think the left side would be better if at least vaguely structured. I believe we
all acknowledge that science is messy, but finding structures and patterns in this mess is research.
So, instead of a cloud with keywords, I would take some kind of blocks connected somehow, and
the arrow with "sharing" leaving the whole set. Let me try to text sketch the whole image I have
below, as a rough structure. I do not understand what "Stats" indicates, though, so I'm skipping it.

Page 21 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

232

Also, I'm avoiding arrows for I assume directions may vary on each case, e.g., data derives from
code/model (ab initio) or code derives from data (analysis)?

/ Data /---/ Code, models, nb / |
 | |---------Sharing-------->
 | |
 / Results / |

2. I appreciate the impact of the conclusion "CODECHECK works" and would even finish with a
period for impact myself, but I'm not sure the trailing explanation sustains it. It is one thing when
Richard Dawkins says "[Science] works. Planes fly, cars drive, computers compute." It does not hit
me the same with "CODECHECK works. We made certificates." I'd expect concrete consequences
there (and I believe there are). However, it is not to say there is any problem in the conclusion itself.
I just think something more on the lines of "CODECHECK works. From AI to pandemic modeling, we
verify meaningful codes and certify their reproducibility (amidst the gambling chaos we live in)." In
other words, spelling out the impact of "we have created a considerable number of certificates"
(what kind? what for?) would make it better in my opinion. The word-crafting art there, of course,
relies on the authors' taste.

3. Just a (personal) comment about the mention of bitwise reproducibility in the "auditable
research" section. I personally have a hard time understanding the concept. Considering float point
arithmetics implementation (e.g., https://docs.nvidia.com/cuda/floating-point/index.html), one
would need the same code, data *and* hardware+software. Such demand is so punctual that I fail
to see how it is even feasible at scale. Certainly, it makes the strictest definition of reproducibility,
just like an ideal gas is the "strictest" gas, but as I do not expect even Hellilum to behave as point-
like particles always, I wouldn't expect such a degree of reproducibility from every research
(notably not from HPC). But again, just my view on the matter, the authors may or may not want to
add a few words to the auditable research session for that, whichever the case being
comprehensible.

Competing Interests: I have discussed possible collaboration with Daniel Nust before, yet
unrealized on the date of this comment submission.

Page 22 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

233

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 23 of 23

F1000Research 2021, 10:253 Last updated: 21 APR 2021

234

14 Geospatial metadata for discovery in
scHolarly publisHing

Authors Tom Niers and Daniel Nüst (20%)

Venue Extended abstract at The 15th Munin Conference on Scholarly Publishing 2020
10.7557/5.5590

Date 09/2020

Licence Creative Commons Attribution International (CC BY 4.0)

235

https://doi.org/10.7557/5.5590

Geospatial Metadata for Discovery
in Scholarly Publishing
Tom Niers and Daniel Nüst

Institute for Geoinformatics, University of Münster
tom.niers@wwu.de, daniel.nuest@wwu.de

15th Munin Conference on Scholarly Publishing,
18–19 November 2020

10.7557/5.5590

Almost every scientific article that refers to existing regions of the earth, contains ”[...]
a narrative description of the study area” (Karl, 2019). At the same time, Shapiro and
Báldi (2012) found that more than a quarter of articles omit maps and coordinates and
only use vague descriptions albeit the relevance of location for said articles’ content.
Geospatial metadata can help to detect biases in research coverage (Karl et al., 2013;
Young & Lutters, 2017), to filter search results for scientific articles (Howell et al.,
2019; Karl, 2019; Karl et al., 2013), and to enhance the understanding of relations
within a study area (Margulies, Magliocca, Schmill, & Ellis, 2016). In more than half
of the scientific articles that refer to locations, coordinates are used to determine the
location (Karl et al., 2013; Shapiro & Báldi, 2012). However, geospatial information
on scientific articles is not yet exploited in scholarly publishing platforms. Coordinates
can be included in articles in different formats (Karl, 2019; Kmoch, Uuemaa, Klug,
& Cameron, 2018) and therefore are prone to errors such as improper formatting,
incompleteness, and ambiguity (Karl, 2019; Margulies et al., 2016), so that demand for
standardization increases (Karl, 2019; Karl et al., 2013; Kmoch et al., 2018; Margulies
et al., 2016; Young & Lutters, 2017). In this work, we report on a novel approach to
integrate well-defined geospatial metadata in a scholar publishing platform so it can
enhance discovery of scientific articles.

geoOJS offers a novel way for authors to provide spatial properties of research
works when submitting an article to a journal based on the open source software
Open Journal Systems (OJS, https://pkp.sfu.ca/ojs/). Previous work applied text
recognition (Kmoch et al., 2018) or pattern matching algorithms (Karl, 2019) to
derive geospatial metadata from papers, but such fully automated workflows are not
without shortcomings. Instead, we decided to streamline the user interaction to create
geospatial metadata so that user’s understanding of the most suitable connections
with location(s) or area(s) is unambiguously recorded. Authors can either search for
a location and accept the suggested bounding box or manually create one or more
suitable geometric shape(s) on a map. If authors enter geometries, a gazetteer is used
to suggest a matching administrative unit’s name to the author. This allows geoOJS
to store geospatial data in two forms: as text, using the above administrative unit
or standardised geographical norm data, and as geospatial coordinates in GeoJSON
format. Thereby the coordinates are stored accurately, while at the same time a
textual description is accessible and flexible for non-map-related usage. In addition
to displaying geospatial information on maps, it is also added to the HTML source

1

236

code of articles’ landing pages in a semantically meaningful way, e.g., using Schema.org
vocabulary. This facilitates indexing by search engines and can improve accessibility
by supporting screen readers better than a regular map. To evaluate these goals,
we implement a prototype for geoOJS and demonstrate the metadata input by the
authors, the storage as precise coordinates and standardized texts, and the integration
of location information in article views (see Figure 1).

Figure 1: Screenshot of geoOJS: geospatial properties in the OJS article view

Future work includes research into usability and usefulness of geospatial metadata
for discovery of articles, a search engine across OJS instances, geospatial and temporal
filters in article search, and validation of geospatial metadata as part of the review
process. We plan to release geoOJS in the OJS plugin gallery so that the increasing
number of independent and Open Access journals may benefit from it.

2

237

References
Howell, R. G., Petersen, S. L., Balzotti, C. S., Rogers, P. C., Jackson, M. W., &

Hedrich, A. E. (2019). Using webgis to develop a spatial bibliography for
organizing, mapping, and disseminating research information: a case study of
quaking aspen. Rangelands, 41(6), 244–247. doi: 10.1016/j.rala.2019.10.001

Karl, J. W. (2019). Mining location information from life-and earth-sciences studies
to facilitate knowledge discovery. Journal of Librarianship and Information
Science, 51(4), 1007–1021. doi: 10.1177/0961000618759413

Karl, J. W., Herrick, J. E., Unnasch, R. S., Gillan, J. K., Ellis, E. C., Lutters,
W. G., & Martin, L. J. (2013). Discovering ecologically relevant knowledge
from published studies through geosemantic searching. BioScience, 63(8), 674–
682. doi: 10.1525/bio.2013.63.8.10

Kmoch, A., Uuemaa, E., Klug, H., & Cameron, S. G. (2018). Enhancing location-
related hydrogeological knowledge. ISPRS International Journal of Geo-
Information, 7(4), 132. doi: 10.3390/ijgi7040132

Margulies, J. D., Magliocca, N. R., Schmill, M. D., & Ellis, E. C. (2016). Ambigu-
ous geographies: connecting case study knowledge with global change science.
Annals of the American Association of Geographers, 106(3), 572–596. doi:
10.1080/24694452.2016.1142857

Shapiro, J. T., & Báldi, A. (2012). Lost locations and the (ir) repeatability of
ecological studies. Frontiers in Ecology and the Environment, 10(5), 235–236.
doi: 10.1890/12.WB.015

Young, A. L., & Lutters, W. G. (2017). Infrastructuring for cross-disciplinary syn-
thetic science: Meta-study research in land system science. Computer Supported
Cooperative Work (CSCW), 26(1-2), 165–203. doi: 10.1007/s10606-017-9267-z

3

238

15 Guerrilla badges for geoscience
researcH packages

Authors & contribution Daniel Nüst (30%), Lukas Lohoff, Lasse Einfeldt, Nimrod Gav-
ish, Marlena Götza, Shahzeib Tariq Jaswal, Salman Khalid, Laura Meierkort,
Matthias Mohr, Clara Rendel and Antonia van Eek

Venue AGILE Conference 2019 Short Paper 10.31223/osf.io/xtsqh

Date 04/2019

Licence Creative Commons Attribution International (CC BY 4.0)

239

https://doi.org/10.31223/osf.io/xtsqh

1 Introduction

The building blocks of research are constantly developing,
though arguably at an unprecedented pace in the current age
of digitisation. Data collection, analysis, interpretation,
presentation, review, and publication take place completely on
computers. However, the main outcome still is often a static
document (e.g. an HTML or PDF file) resembling the
traditional form of dissemination – the research paper. Thus
Buckheit & Donoho (1995) postulated: “An article about
computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship.”
The typical research paper provides only limited links to the
underlying building blocks of the actual scholarship, such as
input datasets, software/hardware environment, workflow
code, or output data. Therefore reproducibility and reusability,
both cornerstones of science, have been identified as
important challenges in geospatial data science (Nüst et al.,
2018; Konkol et al., 2018). Efforts to improve the publication
of and access to data and software, e.g. establishing citation
principles (Wilkinson et al., 2016; Katz & Chue Hong, 2018),
exist and they work (Piwowar & Vision, 2013). Practicing
Open Science (Ibanez, 2014) and the advantages of openness,
transparency and reproducibility, e.g. efficiency and
collaboration effects, are clear (cf. Markowetz, 2015).
Research compendia, a term first used by Gentleman &
Temple Lang (2007) and since then taken up and extended1,
are but one concept to package all buildings blocks of a piece
of research. Nevertheless these practices are not common yet.

1 See https://research-compendium.science for a full list of
recommendations and guidelines.

In this work we use the concept of badges to expose, not
only advertise, the building blocks of scholarship. Badges are
an established artefact in the software development
community to visually highlight important pieces of
information, exploiting a high recognition value. A user can
quickly grasp the current version of a piece of software of
interest, whether its test suite completes successfully or fails,
or whether a tool is available in an established public
repository for easy installation. Gaining these badges, and
keeping them “green” in the case of tests, works as a
motivator for developers. In science, the core medium to
disseminate work between users, i.e. scientists, is the research
paper. Badges for relevant building blocks behind research
papers could benefit both users of this medium. Readers could
quickly assess multiple or single publication items. Authors
are encouraged to share more complete information
(cf. Grahe, 2013) at the prospect of a larger readership and
reuse. Relevance is specific to each reader, e.g. a paper may
use data from the same area of interest or may contain
transferable methods. For reproducible geospatial data
science, we see the following questions as crucial for readers
to decide if a work is interesting for them, e.g. in a literature
study, and badges could help to answer them: Is all code,
data, and documentation openly available? Is a software
environment documented so the results can be reproduced?
What is the area of interest or data location?

In the remainder of this work we first give a detailed
background on badges in science. Then we present and
discuss the first prototype of an API, server, and client
implementation for creating and spreading badges on
scholarly communication platforms.

Guerrilla Badges for Reproducible Geospatial Data Science

Daniel Nüst, Lukas Lohoff, Lasse Einfeldt, Nimrod Gavish,
Marlena Götza, Shahzeib Tariq Jaswal, Salman Khalid, Laura Meierkort,

Matthias Mohr, Clara Rendel and Antonia van Eek

Institute for Geoinformatics (ifgi)
University of Münster

Münster, Germany
daniel.nuest@uni-muenster.de

Abstract

The building blocks of research are developing at an unprecedented pace. Data collection, analysis, interpretation, presentation, review, and
publication take place completely on computers. The final product often is still a static document with only limited links to the underlying
digital material, making transparency and reproducibility a challenge. In this work we apply the mechanism of badges to provide prominent
connections to underlying analyses environments and important (meta-)data to readers of scholarly publications in geospatial data science. An
API specification and implementation for a badge server provide extended and regular badges. The badges leverage recognition value for
executability, licensing, spatial extent, and peer-review metadata – base information which either is or should be made available. We show a
client-side integration method across many third-party platforms that allows evaluation of badges in realistic scenarios. The server and client
enable an independent spreading of badges. The open source publication of all used software enables reproducibility and extensibility. The
badges show potential to enhance interaction with scholarly works and should be evaluated with academic users in the future.

Keywords: badges, open science, data science, publication infrastructures, scholarly publication, research compendium

240

AGILE 2019 – Limassol, June 17-20, 2019

2 Related Work

Digital badges to show a specific accomplishment are popular
accessories to “earn” in Free and Open Source Software
(FOSS) development. They are awarded by platforms
providing a service, or by third-party websites based on
metadata available via APIs of said platforms. Developers
must only follow common practices to provide the required
information, e.g. structured metadata in a project description.
They then include the badges in their documentation to show
relevant bits of information to their users. Most badges are
generated with current data each time they are loaded. They
show a tuple of property name and value, and may use colour
to visually distinguish property values. Badges can include
icons, e.g. a logo, and are provided in different formats,
e.g. vector (as SVG – Scalable Vector Graphics) or raster
(PNG) graphics. Shields.io (https://shields.io/) is a popular
badge service. It provides badges for example for software
repositories (e.g. software version, number of downloads),
license, popularity (download count, ratings), or build systems
(e.g. status of automated tests). Shields.io also renders own
information by providing text and styling information within a
URL. Other badge services cover specific use cases,
e.g. MicroBadger (http://microbadger.com/) provides images
for container images published on Docker Hub.

Due to the high recognition value, badges have been picked
up by platforms and groups in a scientific context, including
several journals. These mostly show static content. The data
repository Zenodo (http://zenodo.org/) and the journal JOSS
(http://joss.theoj.org/) provide badges with the Digital Object
Identifiers (DOIs) of records. The ROpenSci initiative uses
them for different stages of its software review process
(https://badges.ropensci.org/). The Binder project uses badges
to advertise the availability of an interactive notebook for a
project repository. Examples of these badges are shown in
Figure 1.

Figure 1: Badges from (clockwise beginning at top left)
JOSS, MicroBadger, Binder, Zenodo, and ROpenSci Review.

The Center for Open Science (COS, https://cos.io/) designed
badges for acknowledging open practices in scientific articles
(see https://osf.io/tvyxz). COS offers guidelines for
incorporation into peer reviews and adding badges to
documents. The badges are Open Data, Open Materials, and
Preregistration of studies (see Figure 2) and are adopted by
over a dozen of journals to date2. A study by Kidwell et al.
(2016) reports a positive effect from the introduction of open
data badges in the journal Psychological Science: After the
journal started awarding badges for open data, more articles
stating open data availability actually published data
(cf. Baker, 2016). The COS badges are effective in promoting
data publishing and show availability and transparency, but
not geospatial aspects or reproducibility.

2 https://osf.io/tvyxz/wiki/5.%20Adoptions%20and
%20Endorsements/

Figure 2: Full COS badges (from left to right: open data –
blue, open materials – yellow, preregistered – red) in colour,
reduced black-and-white versions for print output also exist.

Source: https://osf.io/tvyxz/wiki/home/.

Peng (2009, 2011) and Rowhani-Farid & Barnett (2018)
report on the usage of badges in the journal Biostatistics: a set
of “kite marks” led to a moderate increase in data sharing.
Marks D and C are awarded if data respectively code is
provided, and R if results were successfully reproduced during
the review process (implying D and C). Figure 3 shows the
usage of R on an article’s title page.

Figure 3: Biostatistics kite mark R rendering (top right part
of the page) in the PDF version of the paper Lee et al. (2009).

Source: https://academic.oup.com/biostatistics/article-pdf/
10/3/409/17736633/kxp010.pdf.

The Association for Computing Machinery (ACM,
https://www.acm.org/) provides a common terminology and
standards for artefact review processes for its conferences and
journals3. Three badges with several levels (see Figure 4) are
awarded using specific criteria, e.g. the Evaluated badge
means artefacts were made available to reviewers and it has
levels Functional or Reusable. The ACM badges provide
excellent information on reproducibility for human readers,
but not on geospatial information and not across platforms.

The Graphics Replicability Stamp Initiative4 (GRSI)
organises a community-driven additional evaluation process
for computer graphics research. Its results are the basis for
different badges for a number of journals and conferences,
e.g. ACM’s badges for ACM Transaction on Graphics.

Figure 4: ACM badges, from left to right: Artifacts
Evaluated – Functional/Reusable (pink/red), Artifacts
Available (green, no evaluation), Results Replicated (light
blue, artefacts provided by author), and Results Reproduced
(dark blue, without author-supplied artefacts).

Source: https://www.acm.org/publications/policies/artifact-
review-badging.

3 ACM policies: Artifact Review Badging, see
https://www.acm.org/publications/policies/artifact-review-
badging; Example article (badges rendered on landing page and
PDF): https://doi.org/10.1145/3197517.3201397

4 http://www.replicabilitystamp.org/

241

AGILE 2019 – Limassol, June 17-20, 2019

These examples show the potential, diversity, and
challenges in describing and awarding badges. This work
explores novel badge types on an article’s reproducibility and
spatial area of interest, and an independent distribution
mechanism, to contribute to the landscape of badges in
scholarly publishing.

3 Geospatial Data Science Badges

3.1 Sources for Badge Information

The basis for useful badges are reliable data sources. For
publications in geospatial data science, there are no
established platforms or metadata protocols beyond regular
article metadata, i.e. for code or data licenses or spatio-
temporal extents of used datasets. Publication date, peer-
review type (e.g. blind or double-blind), and license (i.e. if
article is Open Access) are provided via online library
reference APIs, namely Crossref (http://crossref.org/) or
DOAJ (https://doaj.org/). Search terms are article title or DOI.
The other properties are accessible via the prototypical o2r
reproducibility service (Nüst, 2018). It provides access to the
metadata of Executable Research Compendia (ERC) via the
DOI of the related article. ERC contain all data and code used
in a particular workflow and their creation process includes
automatic extraction and user validation of metadata,
including a spatio-temporal bounding box, for increased
transparency and reproducibility. Both sources are used for
geospatial research badges, but due to the prototypical state of
the o2r API following examples rely on mock-up data.

Figure 5: Extended badges on an article page on DOAJ.org,
integrated below the Abstract section.

3.2 Badge types, badge design, and an API

A RESTful5 Application Programmer Interface (API) defines
routes (i.e. URLs) to access badges of four types to answer the
discovery questions in geospatial data science (see above):

• executable: code and runtime reproducibility
• licence: licensing information or all building blocks
• spatial: publication’s geospatial area of interest
• peerreview: type of peer review

For these types we designed badges at two levels of detail,
regular and extended. The extended badges contain a higher
level of detail, while regular badges aggregate information to
be suitable for search result listings, where they allow a visual
comparison of hits, see Figure 5. Extended badges are more
open in their design, while regular badges follow common
badge styling.

The extended license badge has three categories (code, data
and text), which are aggregated to simpler text (“open”,
“partially open”, “mostly open”, “closed”) in the regular
badge (see Figure 6).

Figure 6: Extended badges reporting different values for
data, text and code licenses (left, middle) and regular badge
(right, not to scale, based on Shields.io).

The extended spatial badge shows the bounding box as an
interactive map, whereas the regular spatial badge only shows
a suitable area name.

Badges for reproducibility, peer review status and license
are colour coded to provide visual aids. They indicate for
example (un)successful reproduction, a single-blind peer
review process, or different levels of open licenses.

The API provides regular badges with HTTP GET requests,
i.e. URLs following the pattern
/api/1.0/badge/:type/:doi, where 1.0 is the API
version, :type is the badge type, and :doi is the
publication’s DOI. Extended badges are returned when
/extended is appended to the URL.

3.3 Implementation

Badger implements the server-side API. It queries public
APIs to elicit metadata and provide the aforementioned
badges types. It uses two badge generation methods: (a)
internally created SVG-based badges, and (b) redirects to
Shields.io, where the information is encoded in the Shields.io-
URL, which is generated on the fly. All badges can be
requested at specific size and pre-rendered as a PNG image
for compatibility. The process for generating the executability
badge for a paper “Global Air Quality and Pollution” from
Science identified by the DOI 10.1126/science.1092666 is as
follows.

5 https://en.wikipedia.org/wiki/Representational_state_transfer

242

AGILE 2019 – Limassol, June 17-20, 2019

1. A client calls the URL https://badger/api/
1.0/badge/executable/10.1126%2Fscie
nce.1092666.

2. Badger queries the o2r API for ERC connected to
the given DOI. If it exists, it queries for the latest
reproduction result status (a “job” in the API).

3. Depending on the result (success, running, or
failure) specified in the job metadata, Badger
generates a Shields.io-URL with green, yellow or
red colour and matching property value.

4. The client displays a badge: .
If an extended badge is requested, Badger generates an SVG

graphic or an embeddable HTML snippet. For the spatial
badge it converts coordinates into textual information, i.e.
country and if available district or place name, using the
Geonames API6, see Figure 7. When Badger does not find
data for a certain DOI, it returns a grey “not available” -
badge, see outermost badges “license” and “peer review” in
Figure 7. Such a null result, e.g. “no spatial data included”,
can be equally helpful during discovery.

Badges are most successful when they are widely used and
consequently quickly recognised by users. Though a desirable
and more sustainable approach, it is unrealistic that
(competing) publishers agree on a common badge system and
design. Therefore we took an unusual approach to augment
existing platforms for discovery of papers using a Chrome
browser extension7, similar to Unpaywall browser extension8.
The Extender implements client-side badge integration. It
inserts badges into search results or article pages using client-
side browser scripting, also known as userscripts, on several
websites including DOAJ (https://doaj.org/), Google Scholar
(https://scholar.google.de/), PLOS (https://www.plos.org/),
Microsoft Academic (https://academic.microsoft.com/), and
ScienceDirect (http://www.sciencedirect.com/),

For each article displayed on these websites, either in a
search result listing or dedicated article pages, Extender parses
the DOI from the page’s HTML code, requests badges from
Badger, and inserts them into the page. The parsing and
insertion is tailored to each supported website. Figure 7 shows
an exemplary result. When the DOI is not directly provided,
Extender queries the Crossref API with the paper title and
uses the returned DOI if the result is unambiguous. Extender
also inserts controls for filtering search results using badge
values and for selecting displayed badges as shown in
Figure 8.

Figure 7: Regular badges integrated into Google Scholar
search result listing between title and authors (partial
screenshot).

6 http://www.geonames.org/
7 https://en.wikipedia.org/wiki/Google_Chrome#Extensions
8 https://unpaywall.org/products/extension

4 Discussion

A badge server for scholarly publications has the potential to
improve discovery workflows for scientists by aggregating
information, including underlying spatial data, with a high
recognition value. It can enable identification of related work
and reusability – an important aim of reproducibility. It also
demonstrates badges as a mean to communicate more
complex information compared to existing approaches.

An independently operated Badger and client-side
integration with Extender may be favourable to a complex
process of establishing a single set of badges across all
involved stakeholders. This “guerrilla” approach allows to
bring a new concept onto researcher’s computers beyond a
specific research project’s own software or websites in a
secure and reliable manner. It can also facilitate long-term
studies, because users are exposed during their regular work
and not only in a lab setting. However, the realised userscript
integration into websites is less stable than an actual
integration in platform APIs would be, because any UI change
or code change may break the userscript. The Open Source
nature of Badger and Extender allows research domains to
adopt criteria to their needs. As a further effect, they may
foster improved research practices regarding publication of
data and code, and reproducibility.

The current API design lacks a transparent process (akin to
ACM or COS badges though theirs are manual) to award the
reproducibility and geospatial badges. The provenance of
badges (i.e. who awarded it, to what, using which criteria)
would be crucial in a scholarly setting to establish trust. It
could be made accessible with interactive badges, e.g. clicking
on a badge opens a pop-up with background information, but
also for other services if the information behind the badges is
exposed in a structured form via the API, supplementary to
the mere images. The current approach could be extended in
these directions leveraging SVG’s features for interaction, and
content-type negotiation for alternative representations. The
novelty of ERC and the o2r reproducibility service is an issue,
because three badge types rely solely on their existence. Only
a wider uptake of ERCs or ERC-like metadata in other
platforms, e.g. geospatial properties in publication metadata,
can mitigate this.

We see automatically generated and independently spread
badges as a promising supplement to the inspection-based
badges by COS or ACM and as a way to expose still
underused properties of publications’ geospatiality and
reproducibility. The biggest risks are fragmentation and
establishing the trustworthiness of sources for badge
information, both due to the distributed approach for defining,
creating, and inserting badges.

Figure 8: Filtering search results using badge values.

243

AGILE 2019 – Limassol, June 17-20, 2019

5 Future Work

While the prototypes show the technical feasibility, the most
important next step is a user study to evaluate the design and
content of the novel badges concerning the goal of improving
user experience during discovery, and to learn more about the
motivation, requirements, and preferences of involved user
groups. The study should investigate potential effects on
willingness to publish research compendia and elaborate on
trust. It could potentially draw parallels to mechanisms behind
other badges, e.g. organic food labels. Such a study can
inform the further development of badges, e.g. interactive
features, visual design, and regarding transparency
(see Discussion). Technical measures can be taken to improve
the experience, such as client- or server-side caching, and
Extender can be reimplemented as a WebExtension9 to make
it available for other browsers such as Firefox. After solving
technical and usability-related challenges, a real adoption by
the scientific community requires an involvement of more
stakeholders and individual early adopters, e.g. funding
agencies and a leading journal or conference. Together these
institutions can initiate a lighthouse project and a public
discourse about the content and scope of badges, so that
iterative improvements can make the badges more useful,
even for larger user groups beyond the geospatial community.

Software and Data Availability

The implementations of Badger and Extender including
Docker image tarballs, a docker-compose configuration, test
data, and instructions for local evaluation (see file
README.md) are published on Zenodo (Lohoff & Nüst,
2018). The source code projects are on GitHub at
https://github.com/o2r-project/o2r-badger respectively https://
github.com/o2r-project/o2r-extender.

Author Contributions

D. N. conceived the idea, supervised the development, and
wrote the paper. L. L. developed software and drafted the
paper. L. E., N. G., M. G., S. T. J. S. K., L. M., M. M.,
C. R. and A. v. E. designed badges and developed software.
All authors approved the final version of the paper.

Acknowledgements

D. N. and L. L. were supported by the project Opening
Reproducible Research (https://o2r.info) funded by the
German Research Foundation (DFG) under project number
PE 1632/10-1. We thank the members of “Scientists for
Reproducible Research” for the input in the forum thread
“Any journals using badges”10, and the reviewers for their
time and constructive comments.

9 https://wiki.mozilla.org/Add-ons/Terminology
10 https://groups.google.com/forum/#!topic/reproducible-research/

AP0k_xi69AA/discussion

References

Baker, M. (2016) Digital badges motivate scientists to share
data. Nature News. doi:10.1038/nature.2016.19907.

Buckheit, J. B. and Donoho, D. L. (1995) WaveLab and
Reproducible Research. In: Antoniadis, A., Oppenheim, G.
(eds.) Wavelets and Statistics, 55–81. Lecture Notes in
Statistics 103. Springer New York. doi:10.1007/978-1-4612-
2544-7_5.

Gentleman, R. and Temple Lang, D. (2007) Statistical
Analyses and Reproducible Research. Journal of
Computational and Graphical Statistics, 16, no. 1, 1–23.
doi:10.1198/106186007X178663.

Grahe, J. E. (2014) Announcing Open Science Badges and
Reaching for the Sky. The Journal of Social Psychology, 154,
no. 1, 1–3. doi:10.1080/00224545.2014.853582.

Ibanez, L., Schroeder, W. J., and Hanwell, M. D. (2014)
Practicing Open Science. In: Stodden, V., Leisch, F., Peng,
R. D. (eds.) Implementing Reproducible Research, 241–280.
Chapman & Hall/CRC The R Series. CRC Press, 2014.
https://osf.io/emvbz/.

Katz, D. S., and Chue Hong, N. P. (2018) Software Citation in
Theory and Practice. In: Davenport, J. H., Kauers, M.,
Labahn, G., Urban, J. (eds.) Mathematical Software – ICMS
2018, 289–96. Lecture Notes in Computer Science. Springer
International Publishing. doi:10.1007/978-3-319-96418-8_34.

Kidwell, M. C., et al. (2016) Badges to Acknowledge Open
Practices: A Simple, Low-Cost, Effective Method for
Increasing Transparency. PLOS Biology 14(5):e1002456.
doi:10.1371/journal.pbio.1002456.

Lee, D., Ferguson, C and Mitchell, R. (2009) Air pollution
and health in Scotland: a multicity study. Biostatistics,
Volume 10, Issue 3, Pages 409–423, doi:10.1093/biostatistics/
kxp010.
Markowetz, F. (2015) Five Selfish Reasons to Work
Reproducibly. Genome Biology 16:274. doi:10.1186/s13059-
015-0850-7.

Lohoff, L., and Nüst, D. (2018) Reproducibility package for:
Badges for Geoscience Containers. Zenodo.
doi:https://doi.org/10.5281/zenodo.1199271.

Nüst, D. (2018) Reproducibility Service for Executable
Research Compendia: Technical Specifications and Reference
Implementation. Zenodo. doi:10.5281/zenodo.2203843.

Konkol, M., Kray, C. and Pfeiffer, M (2018) Computational
Reproducibility in Geoscientific Papers: Insights from a
Series of Studies with Geoscientists and a Reproduction
Study. International Journal of Geographical Information
Science, 1–22. doi:10.1080/13658816.2018.1508687.

244

AGILE 2019 – Limassol, June 17-20, 2019

Nüst, D., Konkol, M., Pebesma, E., Kray, C., Schutzeichel,
M., Przibytzin, H. and Lorenz, J. (2017) Opening the
Publication Process with Executable Research Compendia.
D-Lib Magazine. doi:10.1045/january2017-nuest.

Nüst, D., Granell, C., Hofer, B., Konkol, M., Ostermann,
F. O., Sileryte, R. and Cerutti, V. (2018) Reproducible
Research and GIScience: An Evaluation Using AGILE
Conference Papers. PeerJ, 6, e5072. doi:10.7717/peerj.5072.

Peng, R. D., 2009. Reproducible research and Biostatistics.
Biostatistics, Volume 10, Issue 3, Pages 405–408.
doi:10.1093/biostatistics/kxp014.

Peng, R. D. (2011) Reproducible Research in Computational
Science. Science. 334 (6060): 1226–27.
doi:10.1126/science.1213847.

Piwowar, H. A., and Vision, T. J. (2013) Data Reuse and the
Open Data Citation Advantage. PeerJ, 1:e175.
doi:10.7717/peerj.175.

Wilkinson, M. D., et al. (2016) The FAIR Guiding Principles
for Scientific Data Management and Stewardship.
Scientific Data, 3:160018. doi:10.1038/sdata.2016.18.

245

16 How to read a researcH compendium
Authors & contribution Daniel Nüst (80%), Carl Boettiger, Ben Marwick

Venue arXiv.org arXiv:1806.09525 [cs.GL]

Date 06/2018

Licence Creative Commons Attribution Share-Alike (CC BY-SA 4.0)

Repository https://github.com/research-compendium/how-to-read-a-research-compendium

247

https://arxiv.org/abs/1806.09525
https://github.com/research-compendium/how-to-read-a-research-compendium

ar
X

iv
:1

80
6.

09
52

5v
1

 [
cs

.G
L

]
 1

1
Ju

n
20

18

How to Read a Research Compendium
Daniel Nüst, Institute for Geoinformatics, University of Münster, Münster, Germany

(daniel.nuest@uni-muenster.de)
Carl Boettiger, Department of Environmental Science, Policy and Management,

University of California, Berkeley, Berkeley, California, United States (cboettig@gmail.com)
Ben Marwick, Department of Anthropology, University of Washington, Seattle, Washington,

United States (bmarwick@uw.edu)

Abstract

Researchers spend a great deal of time reading re-
search papers. Keshav (2012) provides a three-pass
method to researchers to improve their reading skills.
This article extends Keshav’s method for reading a
research compendium. Research compendia are an
increasingly used form of publication, which pack-
ages not only the research paper’s text and figures,
but also all data and software for better reproducibil-
ity. We introduce the existing conventions for re-
search compendia and suggest how to utilise their
shared properties in a structured reading process.
Unlike the original, this article is not build upon a
long history but intends to provide guidance at the
outset of an emerging practice.

1. Introduction

1.1 Motivation

Research compendia are an increasingly used form
of publication and scholarly communication. They
comprise not only the research paper’s text and fig-
ures, but also all data and software used to con-
duct the computational workflow and create all out-
puts. They provide a lot of added value by revealing
more of the research process to readers, but, if not
done well, they can increase the difficulty of under-
standing the research. To help readers better un-
derstand how to read a research compendium, we
extends Keshav’s three-pass method targeted at im-
proving skills for reading a research paper (Keshav
2007) with additional steps relevant to a research
compendium’s content.

Unlike the first version of the original (Keshav 2007),
we cannot draw from a long history of experience, be-
cause until recently research compendia have been
relatively rare. Our intention here is to provide
guidance at the outset of an emerging practice to
both readers and authors of research compendia to
help them understand each others’ perspectives and

needs and improve their communication. Authors
can use this guide to improve their research com-
pendium’s structure and content by better anticipat-
ing their readers’ needs. They should not be held
back by unwarranted concerns, like providing sup-
port (Barnes 2010). Readers can avoid the trap of
falling too deep into technological challenges by an
iterative approach to reading and using that gives at-
tention to the scientific issues. Ultimately research
compendia can enhance and deepen the reading ex-
perience, if done right. Keshav’s following introduc-
tion applies directly to research compendia:

Researchers must read papers for several
reasons: to review them for a conference
or a class, to keep current in their field, or
for a literature survey of a new field. A typ-
ical researcher will likely spend hundreds of
hours every year reading papers.

Learning to efficiently read a paper is a
critical but rarely taught skill. Beginning
graduate students, therefore, must learn on
their own using trial and error. Students
waste much effort in the process and are
frequently driven to frustration.

For many years I have used a simple ‘three-
pass’ approach to prevent me from drown-
ing in the details of a paper before getting
a bird’s-eye-view. It allows me to estimate
the amount of time required to review a set
of papers. Moreover, I can adjust the depth
of paper evaluation depending on my needs
and how much time I have. This paper de-
scribes the approach and its use in doing a
literature survey. (Keshav 2016)

The additions made in this work to accommodate
for the content in a research compendium are quite
extensive. This stems from the complexity that an
interactive compendium has compared to a classic
static “paper”, because a research compendium goes
well beyond the “mere advertising of the scholarship”
(Claerbout 1994). We see the breadth of additions as
a sign of potential, namely for unprecedented trans-
parency, openness, and collaboration.

1

248

1.2 Structure

In the remainder of this paper, the excellent origi-
nal work is taken over completely. It is set in italic
font based on the most recent online version: Ke-
shav (2016). The term “paper” was not replaced
with “research compendium” for better readability.

First we briefly introduce research compendia and
existing conventions. We further list relevant re-
sources for authors related to research compendia.
Then, matching the original paper’s section number-
ing, Sections 2 extends the “Three-pass Approach”
to include research compendium features in the read-
ing process. Section 3 extends “Doing a Literature
Survey” with aspects relevant reviewing many re-
search compendia.

1.3 Research compendia

The term research compendium was coined by Gen-
tleman and Lang (2007) who “introduce[d] the con-
cept of a compendium as both a container for the
different elements that make up the document and
its computations (i.e. text, code, data,. . .), and
as a means for distributing, managing and updat-
ing the collection.” According to Marwick, Boet-
tiger, and Mullen (2018) it provides “a standard
and easily recognisable way for organising the dig-
ital materials of a research project to enable other
researchers to inspect, reproduce, and extend the
research”. This standard may differ between scien-
tific domains, yet the intentions and benefits are
the same. Research compendia are practised Open
Science culture and as such improve transparency
(Nosek et al. 2015), “make more published research
true” (Ioannidis 2014), and enable enhanced review
and publication workflows (Nüst et al. 2017). They
answer readers’ needs to understand complex anal-
yses through inspection and manipulation (Konkol
and Kray 2018) and enable other researchers to re-
produce and extend the research (Marwick, Boet-
tiger, and Mullen 2018). Research compendia im-
prove citations since code and data are openly avail-
able (Vandevalle 2012). Ultimately, their goal is to
improve reproducibility (see Barba (2018) for defini-
tions of terms) in the light of claims of a “repro-
ducibility crisis” in several fields. Infrastructures
to support the creation, scientific publication, in-
spection, and collaboration based on research com-
pendia are an active field of research, but none of
which have been widely deployed yet (Nüst et al.
(2017); Brinckman et al. (2018); Stodden, Miguez,

and Seiler (2015); Kluyver et al. (2016); Green and
Clyburne-Sherin (2018)).

As this article is focused on providing hands-on guid-
ance on using, and to some extend also creating,
research compendia, we refer the reader to the ref-
erences for more specific details. For the remain-
der of this work, we assume a minimal view of a
research compendium suitable for readers who ex-
amine a research compendium directly. A research
compendium has three integral parts: text, code,
and data. Text can be instructions, software doc-
umentation, or a full manuscript with figures. Code
can be scripts, software packages, specifications of
dependencies and computational environments, or
even virtual machines. Data can be just about any-
thing, but probably comprises plain text or binary
files that are used as input to the workflow, and pro-
duced as output from executing the workflow.

For authors, there is a wealth of generic recom-
mendations guiding researchers in creating open re-
search (software), for example Sandve et al. (2013),
Taschuk and Wilson (2017), Prlić and Procter
(2012), Stodden and Miguez (2014), and Wilson et
al. (2017). When a research compendium is pub-
lished, one can assume the authors have the inten-
tion to help the reader understanding the work and
accepts there are “no excuses” to not publishing your
code (Barnes 2010). Authors may attempt to reach
the ideals of having one “main” file that can be exe-
cuted with “one-click” (Pebesma 2013), of enabling
re-use with proper licensing (Stodden 2009), and of
interweaving code and text following the literate pro-
gramming paradigm (Knuth 1984).

The following conventions are specifically for re-
search compendia:

• Marwick, Boettiger, and Mullen (2018) and
ROpenSci community’s rrrpkg (https://github.
com/ropensci/rrrpkg) discuss the standards
and tooling of the R programming language and
software engineering tools for a variety of disci-
plines with real-world examples, including sev-
eral templates

• Jimenez et al. (2017) apply software engineer-
ing best pratices from the Open Source software
domain to research (see also http://falsifiable.
us/).

• Konkol, Kray, and Pfeiffer (2018) derive recom-
mendations for authors from issues encountered
reproducing research compendia in geosciences

• Gentleman and Lang (2007) recommend using
programming languages’ packaging mechanisms
for research compendia, more specifically R and

2

249

Python packages
• Chirigati et al. (2016) describe the tool

ReproZip (https://reprozip.org) to support cap-
ture and reproduction of a research com-
pendium

2. The three-pass approach

The key idea is that you should read the pa-
per in up to three passes, instead of start-
ing at the beginning and plowing your way
to the end. Each pass accomplishes specific
goals and builds upon the previous pass:
The first pass gives you a general idea about
the paper. The second pass lets you grasp
the paper’s content, but not its details. The
third pass helps you understand the paper
in depth. (Keshav 2016)

2.1 The first pass

The first pass is a quick scan to get a bird’s-
eye view of the paper. You can also decide
whether you need to do any more passes.
This pass should take about five to ten min-
utes and consists of the following steps:
(Keshav 2016)

1. Carefully read the title, abstract, and introduc-
tion

2. Read the section and sub-section headings, but
ignore everything else

3. Glance at the mathematical content (if any)
to determine the underlying theoretical founda-
tions

4. Read the conclusions
5. Glance over the references, mentally ticking off

the ones you’ve already read
6. Glance over the text looking for (a) URLs

and formatted names referencing software and
data products or repositories not yet mentioned
in the sections read so far, mentally ticking off
the ones you’ve heard about or used, and (b)
tables or figures describing computational envi-
ronments, deployments, or execution statistics

At the end of the first pass, you should be able to
answer the seven Cs:

1. Category: What type of paper is this? A mea-
surement paper? An analysis of an existing sys-
tem? A description of a research prototype?

2. Context: Which other papers is it related to?
Which theoretical bases were used to analyze the
problem?

3. Correctness: Do the assumptions appear to be
valid?

4. Contributions: What are the paper’s main con-
tributions?

5. Clarity: Is the paper well written?
6. Construction: What are the building blocks

of the analysis workflow and how accessible
are they (data set(s), programming language(s),
tools, algorithms, scripts)? Under what licenses
are code and data published?

7. Complexity: What is the scale of the analy-
sis (e.g. HPC, required OS/cores/memory, typ-
ical execution time, data size) and the software
(number of dependencies and is installation pos-
sible with dependency management tools)?

Using this information, you may choose not
to read further (and not print it out, thus
saving trees). This could be because the pa-
per doesn’t interest you, or you don’t know
enough about the area to understand the pa-
per, or that the authors make invalid as-
sumptions. (Keshav 2016)

You may also choose not to pursue the parts of the
research compendium further, i.e. not running the
workflow or looking at data or code, thus saving
resources. Reasons to not read further that relate
specifically to code and data may be that you don’t
have the expertise or access to resources to re-use
the data and code.

The first pass is adequate for papers that
aren’t in your research area, but may some-
day prove relevant. (Keshav 2016)

This first pass suits research compendia comprising
potentially re-usable components, like workflows or
algorithms using data sets or generic software that
are directly transferable to your field of research. Af-
ter the first pass, you should be able to judge if the
software is useful, if it works.

Incidentally, when you write a paper, you
can expect most reviewers (and readers) to
make only one pass over it. Take care to
choose coherent section and sub-section ti-
tles and to write concise and comprehen-
sive abstracts. If a reviewer cannot under-
stand the gist after one pass, the paper will
likely be rejected; if a reader cannot un-
derstand the highlights of the paper after
five minutes, the paper will likely never be

3

250

read. For these reasons, a ‘graphical ab-
stract’ that summarizes a paper with a sin-
gle well-chosen figure is an excellent idea
and can be increasingly found in scientific
journals. (Keshav 2016)

When you write a paper, take care to add instruc-
tions on how a reader can reproduce your work and
provide all required parts, i.e. publish a research
compendium. The instructions should start with a
“blank” system and be specific, i.e. ready for copy &
paste, including expected or experienced execution
times and resources. Such instructions give readers
a good idea about what is needed to recreate your
environment and execute the analysis If your work
requires specialised or bespoke hardware (HPC, spe-
cific GPUs), consider creating an exemplary, reduced
analysis that runs in regular environments.

Also ensure your code and data are properly de-
posited, citable and licensed. If you don’t do this,
these core parts of your work will likely never be
properly evaluated or re-used. See the section “Re-
search Compendia”, above, for recommendations
and further reading on how to make your reviewers’
and readers’ lives easier.

2.2 The second pass

In the second pass, read the paper with
greater care, but ignore details such as
proofs. It helps to jot down the key points,
or to make comments in the margins, as
you read. Dominik Grusemann from Uni
Augsburg suggests that you “note down
terms you didn’t understand, or questions
you may want to ask the author.” If you are
acting as a paper referee, these comments
will help you when you are writing your re-
view, and to back up your review during
the program committee meeting. (Keshav
2016)

1. Look carefully at the figures, diagrams and other
illustrations in the paper. Pay special atten-
tion to graphs. Are the axes properly labelled?
Are results shown with error bars, so that con-
clusions are statistically significant? Common
mistakes like these will separate rushed, shoddy
work from the truly excellent. (Keshav 2016)

2. Remember to mark relevant unread references
for further reading (this is a good way to learn
more about the background of the paper). (Ke-
shav 2016)

3. Skim over data and source code files without
opening them. Are they reasonably named
(Bryan 2015)? Do they follow a well-defined
structure (e.g. a Python package or a research
compendium convention)? Is there a README
file and/or structured documentation for func-
tionalities?

4. Visit the online source code repository, if avail-
able. Is it established and well maintained, or
orphaned? Is there only one author or are there
contributors? How responsive are they to is-
sues? Does the repository have signs of public
recognition (i.e. GitHub “stars” and “forks”)?
Are there regular releases, using semantic ver-
sioning?

5. Follow the instructions to install the re-
quired software and execute the research com-
pendium’s workflow with the provided parame-
ters and input or sample data. Note down er-
rors or warnings but do not try to fix any but
trivial or known problems (e.g. fixing a path or
installing an undocumented dependency).

6. Compare the outputs with the expected ones
reported in the paper. Also check for differences
in output figures: Do labels, legends etc. match
those in the paper?

Points 3 and 4 above hint at how to estimate the
quality of a software, but we recommend to be realis-
tic as to what to expect and be careful not to judge
too fast. The software project you evaluate might
be done by a single researcher who is not a profes-
sional programmer, working under a lot of pressure
to write code for a single use case. In these situations
one might find low levels of code documentation, but
further documentation might be quickly provided by
the authors once you as an external user show inter-
est. Also, no recent changes or releases at a source
code repository can also mean the software is stable
and simply works with no problems!

The second pass should take up to an hour
for an experienced reader. (Keshav 2016)

This does not include the computation time of work-
flows in a research compendium. Use this time to
complete first passes for one or several other com-
pendia. If the software used is familiar, you may at-
tempt to reduce the computation time by sub-setting
data or simplifying the workflow. As an author, con-
sider adding a reduced example to your research com-
pendium for easier access by readers.

After this pass, you should be able to grasp
the content of the paper. (Keshav 2016)

4

251

You should have re-executed the provided workflow
or understand why you could not. You should be
able to complete the second pass even if you are un-
familiar with the actual language the software is writ-
ten in or if you are not a developer yourself. However
we do recommend not to dive too deep, i.e. not go-
ing beyond the provided instructions for the research
compendium’s workflow. At this stage, it is the au-
thor’s responsibility to guide you through their work.

Still, you may also face unsolvable problems, like ac-
cess to specific infrastructure. But if you encounter
issues or have questions, you should communicate
these to the author, for example in the software’s
public code repository, if available. It is important
to do this respectfully, and give the authors a chance
to fix bugs or respond to issues (Kahneman 2014).
Also let the authors know if your reproduction was
successful, especially if you used a different operat-
ing system or software version than reported.

At this point you should be able to judge whether
the software works and if it is sustainable. Based
on this evaluation you can decide to re-use parts of
the analysis, i.e. software, data, or method, for your
own work.

You should be able to summarize the main
thrust of the paper, with supporting evi-
dence, to someone else. This level of de-
tail is appropriate for a paper in which you
are interested, but does not lie in your re-
search speciality. Sometimes you won’t un-
derstand a paper even at the end of the sec-
ond pass. This may be because the subject
matter is new to you, with unfamiliar ter-
minology and acronyms. Or the authors
may use a proof or experimental technique
that you don’t understand, so that the bulk
of the paper is incomprehensible. The pa-
per may be poorly written with unsubstanti-
ated assertions and numerous forward ref-
erences. (Keshav 2016)

The research compendium may have incomplete doc-
umentation, rely on unavailable software (e.g. propri-
etary) or data (e.g. sensitive), or require infrastruc-
ture not available to you (e.g. high-performance com-
puting, HPC). It may use a programming language
or programming paradigms unfamiliar to you.

Or it could just be that it’s late at night and
you’re tired. You can now choose to: (a)
set the paper aside, hoping you don’t need
to understand the material to be successful
in your career, (b) return to the paper later,

perhaps after reading background material
or (c) persevere and go on to the third pass.
(Keshav 2016)

2.3 The third pass

To fully understand a paper, particularly if
you are a reviewer, requires a third pass.
The key to the third pass is to attempt to
virtually re-implement the paper: that is,
making the same assumptions as the au-
thors, re-create the work. By comparing
this re-creation with the actual paper, you
can easily identify not only a paper’s inno-
vations, but also its hidden failings and as-
sumptions. This pass requires great atten-
tion to detail. (Keshav 2016)

If a best practice or established convention for struc-
turing data and code was followed, familiarise your-
self with it now.

You should identify and challenge every as-
sumption in every statement. Moreover,
you should think about how you yourself
would present a particular idea. This com-
parison of the actual with the virtual lends
a sharp insight into the proof and presenta-
tion techniques in the paper and you can
very likely add this to your repertoire of
tools. (Keshav 2016)

Take a close look at data, metadata, source code in-
cluding the embedded code comments, and further
documentation. You now leave the realm of the mere
software user to the developer’s perspective. This
can be a time consuming very close study of the
materials. If data is not publicly available, e.g. be-
cause it contains information about human subjects,
decide if you have a reasonable request to contact
the original authors and ask for data access. Work
though the examples and analysis scripts included
in the research compendium. Play close attention
not only to code, but also to code comments as they
should include helpful information. A good entry
point for your code read may be a “main” script (if
provided by the author), makefile, or literate pro-
gramming document (e.g. an R Markdown file or
Jupyter Notebook). If neither of these are available,
then start with the code creating the figures for the
article (e.g. look for “plot” statements in the code)
and trace your way back through the code until you
reach a statement where the input data is read. Your
impression of the code can help to inform your im-
pression of the article’s quality.

5

252

If you did not succeed before but the work is relevant
for you, spend more time on getting the analysis to
run on your computer. Do not hesitate to contact
the authors of the paper or authors of the software
for help, but follow common error reporting guide-
lines (e.g. Stack Overflow (2018) or Tatham (n.d.)).
For authors it is a great experience to be contacted
by an interested and respectful reader!

With regard to the analysis, you may re-implement
core parts or the full workflow with a different soft-
ware. For example, using a tool you know but which
was not used in the research compendium. Does
your code lead to the same results, or does it give
different ones? Can the differences be explained or
are they not significant? Note that such a replica-
tion is of very high value for science and you should
share your findings with the research compendium’s
authors and also with the scientific community. De-
pending on the efforts you put in, write a blog post
or even publish a replication research compendium
for one or more evaluated research compendia.

If a full replication is not feasible, explore the as-
sumptions you challenge with data and code. Play
around with input parameters to get a feel for
the changing results. Create exploratory plots for
the data as if you would want to analyse it from
scratch, without the knowledge of the existing work-
flow. With your understanding of the code you can
extend the method to a new problem or apply it to
a different dataset. This deep evaluation of code
and data increases your understanding of the au-
thors’ reasoning and decisions, and may lead to new
questions.

To make sure you can trace your own hands-on
changes with the original code and configuration.
We recommend initiating a local git repository when
starting this pass. You can create branches for spe-
cific explorations and easily reset to the original func-
tional state.

During this pass, you should also jot down
ideas for future work. This pass can take
many hours for beginners and more than an
hour or two even for an experienced reader.
At the end of this pass, you should be able to
reconstruct the entire structure of the paper
from memory, as well as be able to iden-
tify its strong and weak points. In particu-
lar, you should be able to pinpoint implicit
assumptions, missing citations to relevant
work, and potential issues with experimen-
tal or analytical techniques. (Keshav 2016)

You should be able to come up with useful extensions
of the used software stack and be able to judge the
transferability and reusability of the analysis’ build-
ing blocks. You should most certainly have improved
your programming skills by reading and evaluating
other people’s code or even trying to extend or im-
prove it.

3. Doing a literature survey

Paper reading skills are put to the test in
doing a literature survey. This will require
you to read tens of papers, perhaps in an
unfamiliar field. What papers should you
read? Here is how you can use the three-
pass approach to help. First, use an aca-
demic search engine such as Google Scholar
or CiteSeer and some well-chosen keywords
to find three to five recent highly-cited pa-
pers in the area. (Keshav 2016)

No search capability comparable to scientific ar-
ticles exists for research compendia, though you
can of course use generic and academic search en-
gines. More and more journals encourage repro-
ducible research and software and data publication,
so that extending your search regular search with
keywords such as “reproduction”, “reproducible”,
“open data/software/code” may improve your re-
sults.

In addition, you can search online platforms where
research compendia have been published and tagged
as a research compendium (research-compendium):

• GitHub label: https://github.com/topics/
research-compendium

• Zenodo community: https://zenodo.org/
communities/research-compendium

There is no journal specifically for research compen-
dia yet, but the following ones feature reproducibil-
ity, computational studies, or openness in a promi-
nent way and can be a starting point for finding
research compendia, if they fit your topic:

• ReScience: https://rescience.github.io/
• Information Systems has a reproducibility ed-

itor and special track for invited reproducibil-
ity papers: https://www.journals.elsevier.com/
information-systems/

A lateral approach takes advantage of the parts of
a research compendium. If you work with a specific
software (tool, extension package, library) or data,

6

253

find out the recommended way to cite it (and follow
it yourself). Most scientific software provides this
information in their FAQ or might have a built-in
function to generate a citation. Scientific data is
often accompanied by a “data paper” or published
in repositories with citeable identifiers. Then search
for recent publications which cite the referenced soft-
ware or data.

Do one pass on each paper to get a sense of
the work, then read their related work sec-
tions. You will find a thumbnail summary
of the recent work, and perhaps, if you are
lucky, a pointer to a recent survey paper. If
you can find such a survey, you are done.
Read the survey, congratulating yourself on
your good luck. Otherwise, in the second
step, find shared citations and repeated au-
thor names in the bibliography. These are
the key papers and researchers in that area.

You can also find shared software or data and use
them as a seed for a next iteration.

Download the key papers and set them
aside. Then go to the websites of the key
researchers and see where they’ve published
recently. That will help you identify the top
conferences in that field because the best re-
searchers usually publish in the top confer-
ences.

Also check where they publish their code and data.
It will give you an idea where this community inter-
acts online and can even lead you to research com-
pendia under development.

The third step is to go to the website
for these top conferences and look through
their recent proceedings. A quick scan will
usually identify recent high-quality related
work. These papers, along with the ones
you set aside earlier, constitute the first
version of your survey. Make two passes
through these papers. If they all cite a key
paper that you did not find earlier, obtain
and read it, iterating as necessary. (Keshav
2016)

If a majority cites or uses a key software, technology,
or dataset, then evaluate it and include it in the next
iteration.

4. Related work

If you are reading a paper to do a review,
you should also read Timothy Roscoe’s pa-
per on “Writing reviews for systems confer-
ences” (Roscoe 2007). If you’re planning
to write a technical paper, you should re-
fer both to Henning Schulzrinne’s compre-
hensive web site (Schulzrinne n.d.) and
George Whitesides’s excellent overview of
the process (Whitesides 2004). Finally, Si-
mon Peyton Jones has a website that covers
the entire spectrum of research skills (Pey-
ton Jones n.d.). Iain H. McLean of Psy-
chology, Inc. has put together a download-
able ‘review matrix’ that simplifies paper re-
viewing using the three-pass approach for
papers in experimental psychology (McLean
2012), which can probably be used, with mi-
nor modifications, for papers in other areas.
(Keshav 2016)

We are working on an extended version of this
matrix to provide space for notes about soft-
ware, data, results of the reproduction, and
application of the methods. See the corre-
sponding repository issue for details and pro-
vide your feedback: https://github.com/nuest/
how-to-read-a-research-compendium/issues/2

If you are reviewing a research compendium, a more
detailed checklist is given in the “rOpenSci Analy-
sis Best Pratice Guidelines” (rOpenSci 2017), which
are partially even automated for R-based research
compendia (DeCicco et al. 2018), and the Journal
of Open Research Software’s guidelines for reviewing
research software (JORS Editorial Team 2018).

5. Acknowledgements

The first version of this document was
drafted by my students: Hossein Falaki,
Earl Oliver, and Sumair Ur Rahman. My
thanks to them. I also benefited from
Christophe Diot’s perceptive comments and
Nicole Keshav’s eagle-eyed copy-editing. I
would like to make this a living document,
updating it as I receive comments. Please
take a moment to email me any comments
or suggestions for improvement. Thanks to
encouraging feedback from many correspon-
dents over the years. (Keshav 2016)

7

254

In the spirit of the original paper, we would like
to make this a living document and invite read-
ers to provide comments or suggestions for improve-
ment via email, as part of this preprint, or on
the GitHub repository: https://github.com/nuest/
how-to-read-a-research-compendium. The reposi-
tory also includes open questions and is where the
paper’s authors openly discuss.

References

Barba, Lorena A. 2018. “Terminologies for Repro-
ducible Research.” arXiv:1802.03311 [Cs], February.
http://arxiv.org/abs/1802.03311.

Barnes, Nick. 2010. “Publish Your Computer Code:
It Is Good Enough.” Nature News 467 (7317):753–
53. https://doi.org/10.1038/467753a.

Brinckman, Adam, Kyle Chard, Niall Gaffney, Mi-
hael Hategan, Matthew B. Jones, Kacper Kowalik,
Sivakumar Kulasekaran, et al. 2018. “Computing
Environments for Reproducibility: Capturing the
‘Whole Tale’.” Future Generation Computer Systems,
February. https://doi.org/10.1016/j.future.2017.12.
029.

Bryan, Jenny. 2015. “Naming Things.”
Speaker Deck. https://speakerdeck.com/jennybc/
how-to-name-files.

Chirigati, Fernando, Rémi Rampin, Dennis Shasha,
and Juliana Freire. 2016. “ReproZip: Computa-
tional Reproducibility with Ease.” In Proceedings
of the 2016 International Conference on Manage-
ment of Data, 2085–8. SIGMOD ’16. New York,
NY, USA: ACM. https://doi.org/10.1145/2882903.
2899401.

Claerbout, Jon. 1994. “Seventeen Years of Super
Computing.” http://sepwww.stanford.edu/sep/jon/
nrc.html.

DeCicco, Laura, Noam Ross, Alice Daish, Molly
Lewis, Nistara Randhawa, Carl Boettiger, Nils
Gehlenborg, Jennifer Thompson, and Nicholas Tier-
ney. 2018. “Checkers: Automated Checking of Best
Practices for Research Compendia.” rOpenSci Labs.
https://github.com/ropenscilabs/checkers.

Gentleman, Robert, and Duncan Temple Lang.
2007. “Statistical Analyses and Reproducible Re-
search.” Journal of Computational and Graphi-
cal Statistics 16 (1):1–23. https://doi.org/10.1198/
106186007X178663.

Green, Seth Ariel, and April Clyburne-Sherin. 2018.
“Computational Reproducibility via Containers in
Social Psychology.” PsyArXiv, February. https://
doi.org/10.17605/OSF.IO/MF82T.

Ioannidis, John P. A. 2014. “How to Make
More Published Research True.” PLOS Medicine
11 (10):e1001747. https://doi.org/10.1371/journal.
pmed.1001747.

Jimenez, I., M. Sevilla, N. Watkins, C. Maltzahn,
J. Lofstead, K. Mohror, A. Arpaci-Dusseau, and R.
Arpaci-Dusseau. 2017. “The Popper Convention:
Making Reproducible Systems Evaluation Practical.”
In 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 1561–
70. https://doi.org/10.1109/IPDPSW.2017.157.

JORS Editorial Team. 2018. “Journal of Open
Research Software - Editorial Policies, Peer Re-
view Process.” http://openresearchsoftware.metajnl.
com/about/editorialpolicies/.

Kahneman, Daniel. 2014. “A New Etiquette for
Replication.” Soc. Psychol. 45 (4):310.

Keshav, S. 2007. “How to Read a Paper.” SIG-
COMM Comput. Commun. Rev. 37 (3):83–84.
https://doi.org/10.1145/1273445.1273458.

———. 2016. “How to Read a Paper.” Manuscript.
Waterloo, ON, Canada. http://blizzard.cs.
uwaterloo.ca/keshav/home/Papers/data/07/
paper-reading.pdf.

Kluyver, Thomas, Benjamin Ragan-Kelley, Fer-
nando Pérez, Brian Granger, Matthias Bussonier,
Jonathan Frederic, Kyle Kelley, et al. 2016.
“Jupyter Notebooks - a Publishing Format for Re-
producible Computational Workflows.” Position-
ing and Power in Academic Publishing: Players,
Agents and Agendas, 87–90. https://doi.org/10.
3233/978-1-61499-649-1-87.

Knuth, Donald E. 1984. “Literate Programming.”
Comput. J. 27 (2):97–111. https://doi.org/10.1093/
comjnl/27.2.97.

Konkol, Markus, and Christian Kray. 2018. “In-
Depth Examination of Spatio-Temporal Figures in
Open Reproducible Research.” EarthArXiv, April.
https://doi.org/10.17605/OSF.IO/Q53M8.

Konkol, Markus, Christian Kray, and Max Pfeiffer.
2018. “The State of Reproducibility in the Compu-
tational Geosciences.” https://doi.org/10.17605/osf.
io/kzu8e.

Marwick, Ben, Carl Boettiger, and Lincoln Mullen.

8

255

2018. “Packaging Data Analytical Work Repro-
ducibly Using R (and Friends).” The American
Statistician 72 (1):80–88. https://doi.org/10.1080/
00031305.2017.1375986.

McLean, Iain H. 2012. Literature Re-
view Matrix. http://archive.org/details/
LiteratureReviewMatrix.

Nosek, B. A., G. Alter, G. C. Banks, D. Borsboom,
S. D. Bowman, S. J. Breckler, S. Buck, et al. 2015.
“Promoting an Open Research Culture.” Science
348 (6242):1422–5. https://doi.org/10.1126/science.
aab2374.

Nüst, Daniel, Markus Konkol, Edzer Pebesma,
Christian Kray, Marc Schutzeichel, Holger Prz-
ibytzin, and Jörg Lorenz. 2017. “Opening the Pub-
lication Process with Executable Research Compen-
dia.” D-Lib Magazine 23 (1/2). https://doi.org/10.
1045/january2017-nuest.

Pebesma, Edzer. 2013. “Earth and Planetary In-
novation Challenge (EPIC) Submission "One-Click-
Reproduce".” http://pebesma.staff.ifgi.de/epic.pdf.

Peyton Jones, Simon. n.d. “Simon Peyton
Jones at Microsoft Research.” Simon Peyton
Jones at Microsoft Research. Accessed May 25,
2018. https://www.microsoft.com/en-us/research/
people/simonpj/.

Prlić, Andreas, and James B. Procter. 2012. “Ten
Simple Rules for the Open Development of Scien-
tific Software.” PLOS Comput Biol 8 (12):e1002802.
https://doi.org/10.1371/journal.pcbi.1002802.

rOpenSci. 2017. “rOpenSci Analy-
sis Guide (Unconf 2017).” Google Docs.
https://docs.google.com/document/d/
1OYcWJUk-MiM2C1TIHB1Rn6rXoF5fHwRX-7_
C12Blx8g/edit?usp=embed_facebook.

Roscoe, Timothy. 2007. “Writing Reviews for Sys-
tems Conferences,” March, 6. https://people.inf.
ethz.ch/troscoe/pubs/review-writing.pdf.

Sandve, Geir Kjetil, Anton Nekrutenko, James Tay-
lor, and Eivind Hovig. 2013. “Ten Simple Rules for
Reproducible Computational Research.” PLoS Com-
put Biol 9 (10):e1003285. https://doi.org/10.1371/
journal.pcbi.1003285.

Schulzrinne, Henning. n.d. “Writing Sys-
tems and Networking Articles.” Accessed May
25, 2018. https://www.cs.columbia.edu/~hgs/etc/
writing-style.html.

Stack Overflow. 2018. “How to Create a Minimal,

Complete, and Verifiable Example.” Stack Overflow.
https://stackoverflow.com/help/mcve.

Stodden, Victoria. 2009. “The Legal Framework
for Reproducible Scientific Research: Licensing and
Copyright.” Computing in Science & Engineering 11
(1):35–40. https://doi.org/10.1109/MCSE.2009.19.

Stodden, Victoria, and Sheila Miguez. 2014. “Best
Practices for Computational Science: Software In-
frastructure and Environments for Reproducible and
Extensible Research.” Journal of Open Research
Software 2 (1). https://doi.org/10.5334/jors.ay.

Stodden, Victoria, Sheila Miguez, and Jennifer
Seiler. 2015. “ResearchCompendia.Org: Cyberin-
frastructure for Reproducibility and Collaboration
in Computational Science.” Computing in Science &
Engineering 17 (1):12–19. https://doi.org/10.1109/
MCSE.2015.18.

Taschuk, Morgan, and Greg Wilson. 2017.
“Ten Simple Rules for Making Research Software
More Robust.” PLOS Computational Biology 13
(4):e1005412. https://doi.org/10.1371/journal.pcbi.
1005412.

Tatham, Simon. n.d. “How to Report Bugs Ef-
fectively.” Accessed June 11, 2018. https://www.
chiark.greenend.org.uk/~sgtatham/bugs.html.

Vandevalle, Patrick. 2012. “Code Sharing Is Asso-
ciated with Research Impact in Image Processing.”
Computing in Science & Engineering Reproducible
Research for Scientific Computing (July):42–47.

Whitesides, G. M. 2004. “Whitesides’ Group: Writ-
ing a Paper.” Advanced Materials 16 (15):1375–7.
https://doi.org/10.1002/adma.200400767.

Wilson, Greg, Jennifer Bryan, Karen Cranston,
Justin Kitzes, Lex Nederbragt, and Tracy K. Teal.
2017. “Good Enough Practices in Scientific Comput-
ing.” PLOS Computational Biology 13 (6):e1005510.
https://doi.org/10.1371/journal.pcbi.1005510.

9

256

17 Synopsis

17.1 Infrastructure & user experience
The infrastructure designed and built during this dissertation must serve the needs of the
users. Therefore, research question IUE1 addresses these user groups, and we discuss how How can packaging of

computational analyses
serve the needs of
authors, publishers,
readers, and
preservationists?

reproducibility practices and the concrete realisation of the ERC as a packaging mechanism
helps each type of user.

For authors, notebooks and containers are an important tool for reproducibility, and using
them is a good idea even without ERCs as the final product of research. As shown in Chap-
ter 4, packaging a complex multi-step analysis openly creates new possibilities, for example
parametrisation of an analysis in an accessible way by extending a graphical UI for container
management with a model option form. However, as the examples in Chapter 10 show,
the reproducibility largely depends on the authors’ individual motivations and skills. That
chapter presents a number of challenges for practical reproducibility in geography and geo-
sciences: the complex combinations of many tools, some of which are proprietary, as well
as the artistic process of creating maps hamper reproducibility, processing infrastructures
can be opaque, and partly irreproducible methods (e.g., due to sensitive data) are sometimes
seen as a get-out-of-jail card to dismiss reproducibility altogether. However, the chapter
also shows that solutions do exist, though establishing them is not in the sole responsibility
of individual authors, because different efforts by authors should not be disadvantageous
compared to other members of their community despite. Individual efforts for better repro-
ducibility are wrongly perceived as additional work when reproducible research actually is
more efficient. Furthermore, these challenges can be mitigated by infrastructure, such as
mechanisms that provide controlled access to sensitive data or to the reproducibility service.
The method of automated environment capturing offered by the reproducibility service is
crucial to serve the broader community of geographers and geoscientists, who are generally
not (yet) experts in applying computational methods in a reproducible way. A core feature
of the ERC is its minimalist approach, which allows authors not versed in computational
reproducibility to just rely on the ERC reproducibility service to create their ERC, but it also
allows authors more familiar with these tools to create handcrafted workflows and write the
computing environment manifest and ERC configuration (Dockerfile and erc .yml) them-
selves. The ERC values simplicity and transparency over complexity. It does not introduce
abstractions that merely hide the uncertainty. Further, with suitable default commands for
the container, readers could still easily inspect and interact with features of the ERC repro-
ducibility service when manually built ERCs are examined. Yet, the minimum requirement
for this ERC approach still requires authors to provide a fully scripted workflow. And, con-
sidering the conclusions of Chapter 11, which presents a vision for the skill set that authors
of the future will have, a fully scripted workflow is the foundation for more effective and ful-
filling scientific authorship. Authors benefit from workflows that foster collaboration with
their readers and are more convincing to reviewers.

Readers are the stakeholders with the most obvious benefits, as the ERC should help them
understand a piece of research much more readily because they will have access to literate
programming documents, can inspect all data and code, and will be able to interact with
workflows based on bindings. A particularly considered reader for the o2r project is the
reviewer. Chapter 13 argues that matching skills for reviewing computational parts of re-
search articles is hard and reviewer time precious. The infrastructure and user experience
provided by the ERC can, to some extent, mitigate these problems and make reviews more
efficient. Naturally, the accessibility of work must be a core concern of all stakeholders,
but the burden to serve the needs of readers and reviewers always lies with the author and

257

KonkolM
Durchstreichen
Addressing the needs of users increases the chances for uptake and acceptance...

KonkolM
Durchstreichen

KonkolM
Hervorheben
das merke ich mir :)

KonkolM
Durchstreichen

KonkolM
Hervorheben
auch das ist eine out of the jail card

KonkolM
Hervorheben
Ich habe jetzt nicht im Paper nachgeguckt, aber gibt es für diese Aussagen Belege?

KonkolM
Durchstreichen

KonkolM
Durchstreichen

KonkolM
Hervorheben
and reuse

can be facilitated by infrastructure (and incentives and policy). As the ERC is the founda-
tion for more collaboration, even as early in the publication process as between authors
and reviewers, it can turn readers into contributors and, thereby, provide benefits for all.
The required openness also removes the barriers of proprietary software, making the crite-
rion of reproducibility a means to ensure reusability, e.g., scripts over point-and-click GIS
tools (cf. Chapter 10). The GEOBIA workflow (see Chapter 4) was a breakthrough for trans-
parency, reproducibility, and reusability in a domain largely relying on one commercial tool.
The article demonstrates that containers can be sued for a specific open and reproducible
geoscientific analysis in the domain of remote sensing. It showcases the potential of con-
tainerisation to ease reproducibility and understandability while simultaneously presenting
the successful creation of a reproducible workflow based on a very complex combination of
FOSS tools.

Publishers are in a challenging situation in academia, but different types of publishers
face different challenges and for different reasons. For small publishers or independent
journals, it is extremely hard to innovate and to finance one-click reproductions of articles.
Nevertheless, these journals as well as independent publishers may attempt reproducible
articles for the mere reason of wanting to do science properly. It is no surprise that a non-
profit organisation with a mandate to innovate openly, eLife11 is one of the leaders when it
comes to novel ways to publish reproducible research. While large publishers should have
the funds for innovation, they face organisational inertia and the growing conflict between
commercial publishing and free academic labour. Especially commercial publishers have no
incentive to invest in complex technical infrastructure when there is no clear monetary ben-
efit. What unites both publisher types (and everything in-between) is the general current
practice of academic publishing (simplified: research, submit, review, publish, repeat), and
the presented infrastructure matching this practice. However, the reproducibility service
and ERC user interface are also suitable for novel more flexible, piece-wise, continuous, or
open publication patterns. Even for post-publication or preprint peer review, or for sepa-
rated reviews of research ideas and methods, a snapshot must always be taken for which the
review is conducted. The ERC concept and tools (Chapters 3 and 5) support working with
such snapshots and provide a novel approach to enhance scientific papers, peer review pro-
cedures, and mid-term preservation of computational research than can be connected and
integrated in existing platforms and procedures in an evolutionary way. The systematic re-
view of platforms (Chapter 6) shows that while publishers do have options to choose from,
the real costs remain hard to estimate. Potentially costly activities include both maintaining
the infrastructure for reproducibility and integrating reproducibility requirements into ex-
isting workflows and systems, and comprise technological and training investments. These
observations are corroborated by many direct conversations with publishers and illustrated
by the slow pace of innovation in scientific publishing. Hrynaszkiewicz (2020) provides an
excellent analysis of how scholarly publishers can help to increase reproducible research,
and the identified key areas can be directly linked to chapters of this dissertation. At the
intersection of publishers, authors, and readers, editors take a key position in establishing
new practices, as they can engage all levels of the culture change pyramid.

Preservationists are stakeholders that are most distant from the regular realm of re-
searchers and have the least leverage, one might even say the least thankful role. The
preservation of workflows was especially considered in the early phase of this dissertation
(cf. Chapter 3). The two-container concept of the ERC (see Figure 1 on page 71), with the
inner (Docker) container holding the computing environment and the outer container
holding all workflow-specific code and data, ensures that no relevant information is
hidden inside the computational container. The outer packaging based on BagIt provides a

11https://elifesciences.org/about

258

https://elifesciences.org/about
KonkolM
Hervorheben

KonkolM
Hervorheben
Hier klingst du aber sehr verständnisvoll ;).

connection to preservation workflows, and the preservation of containers reflects ongoing
research. Regular preservation mechanisms, such as emulation, can leverage containers.
However, the perspective to “preserve” or “archive” ERCs was refined over the course of
the dissertation because putting something into an archive means not using it anymore;
importantly, usage and extension is where ERCs provide the most benefits. The plain-text
simple nature of the ERC configuration and the semantically meaningful bindings as entry
points into a workflow are helpful for humans even when the ERC tools and platforms
may no longer be available. Even though preservation of ERCs could be solved in future
work, the more interesting aspect is short to mid-term reproducibility, say around 10 years.
This might already suffice to enable more reuse and transparency when it matters, and,
ultimately, better quality of the preserved works. While running code that is older is a good
thing, actual reuse and expansion become unlikely and maintenance requires large efforts
(Peer et al., 2021), thereby making a reimplementation more reasonable. As notebooks
are even explored as an alternative to classic papers12, preservationists may turn to the
ERC concept and its implementation because they can facilitate creating snapshots of the
notebook environment. This way, they can preserve the interactive nature of notebooks
when they are first-level items in scholarly communication.

Although researchers will inevitably need more software skills to conduct their work in a
transparent and reusable way, the current situation in terms of education, publishing, and
assessment will not be quickly resolved; instead, it is a generational question. Until re-
search software topics and reproducibility have permeated education and evaluation of all
scientific disciplines, authors and infrastructure providers will have to find a middle ground
regarding what the author must provide so that editors, reviewers, and publishers can still
check and support reproducibility. Therefore, research question IUE2 concerns the level of To what extent can the

process of capturing the
runtime, software, data,
and metadata of
reproducible research
packages be automated
in geoscientific
analyses?

automation needed to capture workflows. The presented infrastructure and key tool, con-
tainerit, presented in Chapters 5 and 7, show that if an author can be asked to provide a
fully scripted workflow, then one can fully automate the ERC creation. Manual steps might
be needed only to collect correct metadata. This scripted workflow may also be a regular
R script, and R Markdown documents may also be used to execute workflows based on
other languages than R, serving as a, possibly thin, integration layer. The sharing of com-
putational research around big datasets remains a large challenge. The architecture allows
for avoiding data duplication if data is too large and for connecting to existing established
(open) data infrastructures, in which a community might have made a strong investment.
The creation of ERC is only possible with modern containerisation technology. Containers
are an immensely useful technology for improving reproducibility of data-based research,
as demonstrated by the large survey paper (Chapter 9) aimed at understanding the whole
breadth of use cases based on containers in R. The same advantages that are crucial for
publishing computationally reproducible papers apply to education or production environ-
ments: Across use cases and approaches, the reproducibility, portability, well-definedness,
and ease of use of computing environments form the common thread. Nevertheless, the
same paper also points out that the fragmentation and doubling of related efforts hamper
the sustainability of a diverse collection of largely unfunded tools. Andwhile the paper ends
with a call for consolidation, researcher freedom mandates that we must also explore the
long tail of geospatial workflows based on the R language and how containers can capture
them (Sunni, 2020). So, while automation can work in most cases, the system needs to allow
handcrafted environments. The question of how to make using both the automatically and
the bespoke environments safe for readers and operators was not answered in this work
beyond authenticating ERC users with real profiles based on ORCID.

12https://www.earthcube.org/2021-earthcube-annual-meeting

259

https://www.earthcube.org/2021-earthcube-annual-meeting
KonkolM
Hervorheben
was ja auch der gängige Zeitraum von Fundern ist, die Archivierung fordern.

The ERC was not created in a vacuum. Alternatives to the ERC web service (some of which
are commercial or closed platforms) have been developed and adopted over recent years,
which points towards the increasing awareness of the need to share computational work-
flows with papers. At the same time, the debate about financing scholarly publishing (e.g.,
increasing use of free preprint and review servers, overlay/independent journals with mini-
mal infrastructure costs, transformative agreements, and transition to Green/Gold/Diamond
OA) changes the landscape of services and platforms. Therefore, research question IUE3How can the ERC fit

into the existing
infrastructure of

services and platforms
for research and

publishing in geography
and geosciences?

asks how the ERC fits into the existing publishing practices, and we should extend the ques-
tion to review how it fits the continuously evolving publishing norms and practices. Of
course, the ERC does not solve all issues around communicating research results, namely the
sharing of private data, but that is an organisational challenge not a technical one (cf. Chap-
ter 10). o2r’s fully open approach, i.e., all specifications and software are openly shared,
and the option to substitute inputs and easily create interactive figures sets it apart from
all but one other solution. Further, the ERC is still unique in its approach for capturing the
computing environment through executing full workflows and storing both manifest and
image, and for exposing key parameters through bindings. However, the o2r system is also
still a research prototype, while other services and tools are commercial products actively
deployed by large publishers or are much more widely used. And even a generic technology
like containerisation is subject to technological drift and even popularity, and needs to be
successful to be supported and maintained (Peer et al., 2021).

Nevertheless, in Nüst & Pebesma (2020) we show that the technical challenges to create,
share, and review reproducible computational workflows can be overcome with today’s
technology. Containerisation and computational notebooks in general are very well suited
to realise a highly reproducible scholarly discourse based on data and code, yet they should
be accompanied by good documentation—a README is always important. These tools are
also likely to be actively maintained for the foreseeable future. This finding also applies to
geography and geosciences. The specifics of geospatial sciences for reproducibility do exists,
but for the most part they are not any harder to solve or any different than in other disci-
plines. Maps, as an important means to communicate results, are still often created with
point-and-click software and not scripted, but that is a social and educational question, as
technological alternatives exist. The history of standardised data access and the more re-
cent availability of big Earth data complicate things and might make it necessary to more
routinely “break up” the ERC to allow access to trusted repositories, but that is also feasible.
Notebooks and other open source script-based tools are increasingly used for geospatial vi-
sualisation and are well suited for sharing reproducible computational workflows if used
right (Rowe et al., 2020; University of Southern California et al., 2021).

In conclusion, practically all chapters of this dissertation call for an adoption of the ready-to-
use methods to overcome barriers and transform scientific communication in the geospatial
disciplines, and we can extend this call to include research compendia in general and the
ERC specifically. To summarise, the ERC concept and tools can be integrated into publishing
platforms in geography and geosciences to evaluate computational snapshots of research works
in a way that suits all stakeholders.

17.2 Communities, incentives & policy
The top-down perspective on reproducibility in geography, geoscience, and GIScience is
guided by the communities and their self-given practices, including norms for mutual recog-
nition of research outputs and written policies. The studies to assess the state of repro-
ducibility in GIScience (Chapters 11 and 12) do not leave much room for interpretation—
reproducibility is quite low, even when looking back just a few years. Both articles inves-

260

KonkolM
Hervorheben
what? :D

KonkolM
Hervorheben
Da bin ich vielleicht pingelig, aber ich würde eine Forschungsfrage im Laufe einer Arbeit nicht ändern. Auch nicht als sprachliches Mittel...

KonkolM
Hervorheben
Ich glaube, das ist nicht das richtige Wort. Es gibt ja durchaus diese leigitimate reasons for not publishing open data (privacy, national secutity etc.). Siehe situated openness" und CARE Principles

KonkolM
Hervorheben
ref to TRUST principles?

tigating the state-of-the-art in GIScience conference publications show that, at the time of
investigation, none of the assessed 107 papers provided sufficient details and references to
deposits of data or code to allow a reproduction to be practical, i.e., without intensive inter-
action with the authors or without substantial efforts to recreate large parts of the workflow.
The chapters’ main Figures 3 on page 171 respectively 1 on page 191 illustrate these results
clearly. For the vast majority of papers, this is the case even at the time of publication.
Figure 4 shows the main patterns for assessed papers of both conferences. Noteworthy are
the complete lack of papers that achieve the highest level of 3 (open and published perma-
nently) in any of the categories. While the majority of papers describe methods and results
sufficiently tomake a recreation in principle possible (level 1), about half of the papers do not
give enough details to access data and about two thirds do not document the computational
environment at all (level 0). Within the smaller groups that achieve levels of 2 (i.e., access
provided, but not permanently and open) the figure shows that there’s plenty of jumping
between levels and most combinations seem to exist. This is a sign of the lack of common
practice and the differing opinions and understanding of authors concerning good and open
enough communication.

The assessments’ core takeaway is that unavailability of data and code and incompleteness
of methodological details are insurmountable barriers to reproductions. We largely attribute
this to a lack of recognition and requirements, so the articles give concrete recommendations
for improvement to authors and conference organisers and speak directly to the community
members. It should be noted that both works clearly separate the validity of results from
the reproducibility of workflows (see also Riet et al., 2019). The chapter’s recommendations
are, to a large extent, based on the lessons learned from the assessments itself and the expe-
riences made throughout working on this dissertation, but also on the literature from other
disciplines. The need for communities to step up is also argued clearly in the conclusions
of the above chapters, but especially in Chapter 10, which concludes with goals that might
seem lofty, but are without any alternative: “[..] the benefits of working reproducibly are by
now clear. Technical, systemic, and cultural barriers are conquerable. The scientific commu-
nity should embrace the disruptions in scholarly publishing [..] by setting up new [..] standards
for scholarly communication. The maxim [..] should be open source software implementing an
open and self-correcting public infrastructure controlled by scientists.” (Nüst & Pebesma, 2020).

The Reproducible AGILE initiative shows how quickly practices can change, provided that
the topic finds champions in the community as well as institutional support. Initiated by a
series of workshops, a community adopted policies that require transparency and reward
openness and reproducibility in just a few years—the start of cultural change happens at
an observable speed. In its first two years, the reproducibility review confirmed 14 suc-
cessful reproductions13, and all published full papers in 2021 had to make data and software
(un)availability explicit. The fact that these 14 papers could be reproduced strongly suggests
that all of them, unless data could only shared privately, would likely reach at least a level of
2 across all categories, and at least a few properly deposited material to score 3s—a clear im-
provement over the earlier assessed works. The main findings of the reproducibility review
were that a large spectrum of reproducibility exists, that the direct communication between
author and reproducibility reviewer and the subsequent immediate impact of recommenda-
tions on submissions (i.e., changesmade before final publication) is beneficial and rewarding,
and that the main challenge for reproducibility reviewers remains documentation (e.g., un-
documented runtime, lack of links between code/data artefacts and paper, incompleteness)
but not at all unassertive behaviour or doubts on the side of authors (Nüst, Ostermann, et
al., 2020). With the organisation of workshops, the assessment of the state of reproducibil-
ity and lobbying with the community leadership, the need for change and the practicality

13https://agile-giss.copernicus.org/articles/

261

https://agile-giss.copernicus.org/articles/
KonkolM
Hervorheben
shows the power of a community

0

1

2

0

1

2

0

1

0

1

2

0

25

50

75

100

Input Data Methods/
Analysis/
Processing

Computational
Environment

Results

Category

N
um

be
r

of
 p

ap
er

s

Category levels (#)

0 0 0 1 (2)

0 0 1 1 (1)

0 1 0 0 (6)

0 1 0 1 (26)

0 1 1 1 (15)

0 2 0 2 (1)

1 0 0 1 (1)

1 1 0 0 (1)

1 1 0 1 (21)

1 1 0 2 (1)

1 1 1 1 (6)

1 2 0 1 (1)

1 2 1 1 (1)

2 1 0 1 (7)

2 1 1 1 (7)

2 1 1 2 (2)

2 2 0 2 (1)

Figure 4: Combined alluvial diagram. Includes groups of papers across four categories for
themerged AGILE (Chapter 11) and GIScience (Chapter 12) datasets; the category Preprocess-
ing was dropped because of difficulties to clearly assess it; included are 100 papers without
any “not applicable” value from 2010 to 2018; see analysis notebook.

262

https://zivgitlab.uni-muenster.de/d_nues01/phd-package/-/blob/master/combined-giscience-assessment-figure.Rmd

of reproducible methods was conclusively demonstrated to the community, and the focus
on positive encouragement works at least so far and for this particular setting (Nüst, Oster-
mann, et al., 2020; Nüst, 2021d). Nevertheless, the discourse in the community continues
and what “reproducibility” means concretely for the discipline and event is evolving.

Because the recommendations given across all chapters draw from the lessons learned
from other disciplines, they are strong and promise sustainability through widespread
adoption across all scientific disciplines. Only small domain-specific challenges were
identified (cf. Chapter 10), and the solutions are, in general, not specific to geospatial
sciences, answering CIP1. The domain-specific practices resolve around common practices What are

domain-specific
challenges and solutions
for the geosciences
domain in the context of
reproducible
publications?

of map-making, e.g., the broad application of largely point-and-click GIS tools, and
shortcomings in education and the habit of little scrutiny of published works. Even for the
AGILE conference and community, the recommendations and conclusions presented in
Chapter 11 leave some goals yet not reached. Tobler’s first law of geography14 does lead to
interesting questions on the replication of geolocation-based research, but, generally, the
challenges and solutions—both technical and social—do not set geography, geosciences,
and GIScience apart from other disciplines.

Since most challenges are shared with other disciplines that use observational or simulated
data, and because more and more disciplines are employing geospatial data and looking to
geospatial communities for guidance, it is reasonable to connect with interdisciplinary ap-
proaches to improve reproducibility. One such initiative is CODECHECK, which employs
a more evolutionary and much less technical approach to increase awareness and recog-
nition for reproducibility, and, thereby, complements the developed solutions driven by
technological advances. Chapter 13 analyses the options of integrating code execution into
peer review, the required roles, and barriers as well as opportunities for involved stake-
holders. These provide a toolbox for stakeholders in (geospatial) publishing (e.g., editors,
publishers) to start requiring and evaluating the reproducibility of submissions. To date, 25
CODECHECK certificates have been created. These certificates demonstrate the value and
a reasonable scope of the execution of workflows by an independent person as part of the
peer review process. Both Reproducible AGILE and CODECHECK show how important it is
to complement technical solutions with contributions to education and lobbying for policy
changes.

Certain incentives for researchers to work more reproducibly and for communities to adopt
reproducible practices and introduce them into policies include novel services and features
that would not be possible with classic, irreproducible sharing of research outputs and
merely text-based communication of results. To answer CIP2, this dissertation presented What new services and

features can be built
upon reproducible
workflows, e.g., when
packaged as an ERC?

the ERC itself and a platform for ERC creation and inspection. Furthermore, it looked into
downstream applications that demonstrate advantages of applications based on sharing re-
search works in the form of (E)RCs. What would be possible when researchers create and
publishers publish ERCs but not PDFs?

Chapter 14 is based on a supervised thesis (Niers, 2020) and gives a preview into the options
available when using an ERC by presenting the manual capture of geospatial metadata for
articles in a journal and showing how these can be displayed on a journal website. With
ERC, such a process could be completely automated. The research project OPTIMETA will
extend the early geoOJS prototype presented in this work into a full-featured OJS plugin
with search using spatial indexes and a cross-journal discovery platform.
Extending on the blog post Reproducible Research Badges and presenting the results of a
study project of the same name, Chapter 15 describes an independent solution to integrate

14https://en.wikipedia.org/wiki/Tobler%27s_first_law_of_geography

263

https://codecheck.org.uk/register/
https://codecheck.org.uk/register/
https://projects.tib.eu/optimeta
http://o2r.info/2017/09/12/reproducible-research-badges/
https://en.wikipedia.org/wiki/Tobler%27s_first_law_of_geography

metadata as badges on articles and reproducible research across a number of online por-
tals to improve discovery of scientific works. It demonstrates the relevant contributions
that a reproducibility service, described in Chapter ⁇, can make to scientific communica-
tion, namely by providing relevant metadata regarding executability. It also shows how
new technologies can impact established practices on the user interface side, which is oth-
erwise out of the scope of this dissertation. A supervised thesis demonstrated the scalable
on-demand creation of badges based on complex metadata (Graupner & Nüst, 2020) and
could be adapted to ERC badges.
The third downstream usage of ERCs, Chapter 16, builds on the idea that when research com-
pendia gain more traction, readers need to change the ways they approach a piece of litera-
ture, which applies not just to reading but to interacting, using, extending, etc. The preprint
attempts to provide guidance for both authors and readers of a research compendium. The
text offers reflections on the potential impact that (executable) research compendia can have
on science communication and contributes to their advancement. These showcases merely
scratch the surface of ERC-based scholarly communication, and more ideas are presented
in the Outlook.

The balance between technological solutions and adopting new ways to communicate and
collaborate is deeply embedded in the culture change pyramid. This balance is reflected in
this dissertation by the inclusion of both the innovative, technology-driven approach for sci-
entific commons based on ERCs and the “less is more” approach that highlights the human
interaction and community practices with CODECHECK and Reproducible AGILE. Besides,
a number of talks, events, posts and collaborations15 (Nüst, 2019a, 2021a, 2021b, 2018, 2017b,
2019b, 2020b, 2020a, 2021e; Nüst, Drost, et al., 2021; Nüst, Schutzeichel, et al., 2018; Nüst
& Konkol, 2020; Sochat & Nüst, 2021; Steeves et al., 2017) gave us many opportunities to
promote reproducibility in general, talk about RCs (without the E), advertise useful prac-
tices, or contribute to projects in other disciplines (Breznau et al., 2019, 2021). These texts,
software contributions, and presentations are not formally part of this dissertation, but they
provided interactions and discussions that were an important source of ideas and a creator
of opportunities.

17.3 Conclusion
Cultural change is very slow. The technological innovations and means to influence norms
which were identified in this dissertation nevertheless contribute to a wider-scale adoption
of reproducible research practices. While the fundamental ideas for reproducibility have
been around for a long time, notably with Claerbout & Karrenbach almost 30 years ago
(Claerbout & Karrenbach, 1992) and with research compendia first presented in 2007 by
Gentleman and Temple Lang (Gentleman & Temple Lang, 2007), the modern technologies
transferred to reproducibility tools and scholarly practices in this work provide a new level
of accessibility and pathway for reproducible methods. However, the age of the landmark
papers also shows that adoption is too slow and a technology-driven approach does not suf-
fice, despite all individual and collective benefits, and despite the progress on Openness (e.g.,
in geospatial science, Minghini et al., 2020). Therefore, concerted social actions are required
as suggested and initiated by this work, so that publishing of research results can catch up

15Over 40 entries were contributed to the o2r project blog. The website https://research-compendium.science/
was started to collect all information around research compendia and own research outputs as well as reproducibil-
ity basics were presented in a number of keynotes and talks, see https://o2r.info/publications/. Furthermore, the
Reproducible Research Support Services (R2S2, <https://go.wwu.de/r2s2>) is part of the o2r project, offering mem-
bers of the University of Münster consulting services on setting up reproducible workflows, creating research
compendia, and it reproduces workflows of manuscripts before submissions to increase trust in the results.

264

https://o2r.info
https://research-compendium.science/
https://o2r.info/publications/#%EF%B8%8F-talks
https://go.wwu.de/r2s2
KonkolM
Hervorheben

KonkolM
Hervorheben
Irgendwo muss noch mind shift rein. Ich benutze das ständig und alle nicken immer.

with the methods of conducting research. The technology adoption lifecycle16 indicates five
stages of adoption that any innovation typically goes through: innovators, early adopters,
early majority, late majority, and laggards. Even over the short time frame of this disser-
tation, containerisation technology and reproducibility review practices have arguably left
the innovators stage and are being picked up by early adopters. As communities start to
shift norms in a way that could lead to a shift in policy, it is not out of line to hope for
a majority adoption and to expect more reproducible practices within the next 5-10 years.
While working towards these practices, communities will have to continue their discourses
about what reproducibility means for them, and how close to original results a reproduction
must be to be deemed successful (cf. Riet et al., 2019). The technological advancements and
the increase in complexity of research outputs that contributed to the “falling behind” of re-
producibility concerns will never stop again, so it is paramount that all ideas and solutions
presented here let a human make the final call about reproducibility and judge quality and
validity in interplay with computational reproducibility.

To achieve this culture change, a few open questions remain and are presented in the out-
look below. To conclude, one must also consider the question of what is the geoinformatics
in all this? In my understanding, as a field of “hyphenated informatics,” geoinformatics
researches solutions to geospatial problems using information technology (IT). Geospatial
problems often are the questions and issues that geographers and geoscientists face in their
work. In the case of the research presented in this dissertation, the issue is reproducibility.
Domain-specific solutions using IT regularly require the adaptation and transfer of novel
concepts and tools from computer sciences and general IT. In this case, containerisation was
applied andmade available for a broader community of geospatial disciplines. Of course, the
designed infrastructure could just as well be applied to other natural sciences, and the meth-
ods to understand and shift community practice are transferable metascience, too. However,
directly addressing geographers, geoscientists, and GIScience researchers is needed to com-
municate the challenges and approaches of reproducible research successfully. Activities
like research on reproducibility have a very generic component, nevertheless they are im-
portant to carry out in a specific domain so they do not remain a theoretical exercise. The
communication with researchers and the need for a practical evaluation require the bridging
between informatics and geo-disciplines and the consideration of barriers and opportunities
across all levels of the culture change pyramid. That requirement is met by this dissertation’s
key contributions:

• This work realises a functional infrastructure for more reproducible scholarly commu-
nication based on the concept of the Executable Research Compendium and demon-
strates more open solutions and practices this infrastructure can support.

• It offers innovations in the application of containerisation to the practices of repro-
ducible research, including handcrafted as well as automatically captured computing
environments, and it gives overviews of common practices based on containers.

• It highlights the state of reproducibility in GIScience and gives clear steps for stake-
holders to improve transparency, reproducibility, and potential for collaboration of
research in geography, geoscience, and GIScience.

• It provides approaches to introduce reproducibility in peer review and publishing
practices based on numerous reproductions and community involvementwith demon-
strated success.

16https://en.wikipedia.org/wiki/Technology_adoption_life_cycle

265

https://en.wikipedia.org/wiki/Technology_adoption_life_cycle

17.4 Outlook
Building upon the key contributions and lessons presented in the previous chapters, we see
the following promising directions for future work.

Notebook- or ERC-based research is better from an individual perspective, but it also facil-
itates strategic research building to accumulate evidence, which can more effectively deal
with reproducibility challenges (Nichols et al., 2021). With ERCs, we don’t just publish re-
sults but collaborate on the advancement of science. The idea of the ERC as a self-contained
publishable piece of research output has not lost any appeal, because the scenarios and ap-
plications that would benefit from the ERC as the “unit of publishing” are manifold. Beyond
the downstream applications presented above, most benefits lie in the opportunities to
discover, re-combine, and examine ERCs. In particular, realising the idea of adapted
representations depending on the use case as presented in a vision paper (Kray et al., 2019)
would be breaking new ground for communication among scientists and with the public.
New discovery solutions can take advantage of the meaningful metadata about the method
(used software, libraries, computing environment) and data (spatial extent, temporal extent)
that can be automatically derived from the contents of ERCs. Based on these metadata, a
supervised thesis (Lohoff, 2018) demonstrates a starting point for exploring advanced rec-
ommendations of related works that go beyond current standards of keywords and full text
search. For journals not yet ready to make the switch to ERCs, an upcoming project will in-
troduce geospatial metadata for journal articles (Hauschke et al., 2021). A remaining open
question is the cost of reproducibility. First, who pays for the computing? Publishers or
universities? Can computational costs be made transparent, or will they be paid through
indirect fees, such as publication charges? With limited computing time, one might also ask
how to determine what should be reproduced and what should not. Second,who pays for the
maintenance?. As Peer et al. (2021) point out, reproducibility is dynamic and active main-
tenance of datasets and code projects is not rewarded but needed, and requires resources,
infrastructure, standards, and policies (Peer et al., 2021). The costs, unsurprisingly, reach
across all levels of culture change.

With the recent awareness on reproducibility, it is unsurprising that more andmore journals
and conferences are considering an evaluation computational workflows. Even though hard
requirements are still far away, the next generation of researchers will find the sharing and
evaluation of data and code much more natural. To support scientific venues in the uptake
of reproducibility reviews, we have conceptualised a survey on code execution during
peer review in journals and conferences (Nüst, Seibold, et al., 2021). The idea is to
conduct semi-structured interviews with reproducibility editors of conferences and journals
to collect data on how the different processes for workflow evaluation work. The lessons
captured in this work will be a great source to develop a shared understanding of what is
reasonable and useful to expect and to demand from authors, reviewers, and editors.

The ideas and plans for the continued development of the o2r platform and ERC con-
cept are of course too numerous to discuss here. The biggest challenge for a wider adoption
are scalability and stability, which are less of a research challenge and more of a software
development task. One core idea here would be to re-evaluate other platforms as a basis,
e.g., support ERCs in BinderHub (Project Jupyter et al., 2018), rather than implementing
yet another scheduling platform for containerised workspaces. The idea of wizard-based
creation of interactive bindings is still unique and potentially very useful for a transition
to more computation-focused means of publication, such as eLife’s ERA17 or peer-reviewed
notebooks18. Furthermore, the concept of the ERC could be explored not only to capture

17https://elifesciences.org/labs/dc5acbde/welcome-to-a-new-era-of-reproducible-publishing
18https://www.earthcube.org/2021-earthcube-annual-meeting

266

https://elifesciences.org/labs/dc5acbde/welcome-to-a-new-era-of-reproducible-publishing
https://www.earthcube.org/2021-earthcube-annual-meeting

just notebooks and research papers but to enable the portability and archival of other inter-
active works with spatial data, such as atlases19 or textbooks.
However, the ERC is not free of challenges. The question of how to preserve complex com-
pounds such as the ERC is not yet answered, and it is still unknown whether archiving
computing environments is possible in a useful way. Considering the fact that “archival”
normally means “not going to be used anymore,” at some age ERCs would become the ob-
ject of investigation for science historians. Is it feasible to actively check the “health” of
a containerised analysis in ERC as part of a deep integrity check in an ERC archive (cf.
Peer et al., 2021)? The impact and compatibility of ERCs with existing work on preserva-
tion of containers and advances in providing easy access to emulation20 should be explored.
Furthermore, the question of effectively and transparently capturing and managing the li-
censes of the myriad parts in an ERC was only barely addressed. The ERC is not the only
idea that promises to solve issues related to sharing computational research. It should be
a worthwhile exercise to explore conversions between approaches to package computational
workflows and possibly identify a minimal common ground, so that no “winner” has to be
declared but instead the most suitable of compatible tools is used. The shared foundation of
containers is a promising start for connecting, e.g., Whole Tales, ERAs, ERCs, and ReproZip
packages.

These technical approaches must always be accompanied by education and community
interaction, otherwise they won’t be able to encroach upon the higher layers of the cul-
ture change pyramid. The challenge of achieving policy changes through recognition
and wide adoption of code execution as part of the CODECHECK initiative and Repro-
ducible AGILE, e.g., by providing a codechecking infrastructure, mentoring or support for
training ERCs, and building a pool of experienced diverse codecheckers for independent
scholarly led diamond OA journals or to preprint servers, reaches across all layers of the
culture change pyramid. Just as o2r, it attempts to change academia through peer-review
practices, but it builds on top of the technological progress made since the beginning of o2r
and this dissertation. A longitudinal study of the impact of CODECHECKs and guidelines
for reproducible papers, e.g., by repeating the assessment of GIScience papers in 2023 or by
comparing discipline journals with and without code execution regularly, could powerfully
test and document the effects of policy changes and community discourse.

How can the case for reproducibility be made stronger? While wider adoption of repro-
ducibility practices will increase transparency and reusability, and thereby reduce dupli-
cated and positively impact quality, improving reproducibility could be combined with com-
plementary efforts to increase the number of replications, i.e., research to investigate the
original question with new data and methods (code). Therefore, as suggested in Chapter 12,
the reproduction and replication of fundamental works in geography, geoscience,
and GIScience could be a game-changing activity. For example, the encouragement of
replications and reproductions as topics of undergraduate theses would be beneficial both
for the disciplines, which could increase the trust in their foundations, and for younger gen-
erations of researchers, who work on relevant questions and learn from excellent pieces of
research.

Finally, the work of this dissertation comes to an end in a time when reproducible research
is en vogue. Similar to Sören Auer’s concerns about research data management21, where
he warns about the “lowlands of a burned RDM vision” in connection with the technology

19Cf. presentation at Werkstattgespräch “Atlas-Zukünfte” (Forschungsbereich Geovisualisierung des Leipniz-
Institut für Länderkunde, IfL), Leipzig, Deutschland, in 2016; http://www.slideshare.net/nuest/atlas-zuknfte.

20E.g., EaaSI, https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/.
21Presentation at https://docs.google.com/presentation/d/1-RFf-JK5gpudvQvqzF6LdCV5FfGttXU6v0qC2-

n3xHw/edit# summarised in https://twitter.com/SoerenAuer/status/1323899294827556864.

267

http://www.slideshare.net/nuest/atlas-zuknfte
https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/
https://docs.google.com/presentation/d/1-RFf-JK5gpudvQvqzF6LdCV5FfGttXU6v0qC2-n3xHw/edit#slide=id.ga71d170be5_0_53
https://docs.google.com/presentation/d/1-RFf-JK5gpudvQvqzF6LdCV5FfGttXU6v0qC2-n3xHw/edit#slide=id.ga71d170be5_0_53
https://twitter.com/SoerenAuer/status/1323899294827556864

adoption lifecycle, one must be careful to identify sustainable motivations and incentives for
the broad majority of researchers. It is not sustainable to convince only the altruistic, inno-
vative, or simply well-positioned early adopters of open practices. Only in a culture change
that reaches everybody can the burdens as well as the benefits be shared equally between
individual researchers and science in general. This change must include long-term funding
for maintaining core data, software, and infrastructure (Anzt et al., 2021; Ficarra et al., 2020;
Mons, 2020). Luckily, research communities themselves, with a special burden on seniors
and leaders, have the power to set their laws and norms and to shape their markets and in-
frastructures. Hopefully, this work contributes to these forces to be used for more open and
much more reproducible geospatial sciences. Reproducible research is just a small building
block in a much larger transformation in science that needs to tackle challenges around, for
example, equity/diversity/inclusion, openness, research assessment & evaluation, metrics
& incentives, predatory publishing, misinformation, involving the Global South, healthy
work environments, career opportunities for software experts, publication pressure & bias,
and valuing reuse over piecewise publishing (Mejlgaard et al., 2020; Schimanski & Alperin,
2018; West & Bergstrom, 2021). Nevertheless, reproducibility is one topic that individuals
and communities can relate to can use to connect with each other to advance science; there-
fore it is a conquerable challenge for the foreseeable future.

268

18 References
Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard, B. Y., Seemann, G., Struck, A.,

Achhammer, E., Aggarwal, P., Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis,
G., Dabrowski, P. W., Ebert, P., Flemisch, B., Friedl, S., Fritzsch, B., Funk, M. D., Gast,
V., Goth, F., Grad, J.-N., Hegewald, J., Hermann, S., Hohmann, F., Janosch, S., Kutra, D.,
Linxweiler, J., Muth, T., Peters-Kottig, W., Rack, F., Raters, F. H. C., Rave, S., Reina, G.,
Reißig, M., Ropinski, T., Schaarschmidt, J., Seibold, H.,Thiele, J. P., Uekermann, B., Unger,
S., & Weeber, R. (2021). An environment for sustainable research software in Germany
and beyond: Current state, open challenges, and call for action. F1000Research, 9, 295.
https://doi.org/10.12688/f1000research.23224.2

Appel, M., Nüst, D., & Pebesma, E. (2017). Reproducible Earth observation analytics: Chal-
lenges, ideas, and a studycase on containerized land use change detection. Geophysical Re-
search Abstracts, Vol. 19. https://meetingorganizer.copernicus.org/EGU2017/EGU2017-
8525.pdf

Brachman,M. L. (2020). Don’t forget about geography. Journal of Spatial Information Science,
21, 263–266. https://doi.org/10.5311/JOSIS.2020.21.727

Breznau, N., Rinke, E. M., Wuttke, A., Adem, M., Adriaans, J., Alvarez-Benjumea, A., Ander-
sen, H. K., Auer, D., Azevedo, F., Bahnsen, O., Balzer, D., Bauer, G., Bauer, P., Baumann,
M., Baute, S., Benoit, V., Berning, C., Bernauer, J., Berthold, A., … Nguyen, H. H. V. (2019).
The crowdsourced replication initiative: Investigating immigration and social policy prefer-
ences. Executive report. https://doi.org/10.31235/osf.io/6j9qb

Breznau, N., Rinke, E. M., Wuttke, A., Adem, M., Adriaans, J., Alvarez-Benjumea, A., An-
dersen, H. K., Auer, D., Azevedo, F., Bahnsen, O., Balzer, D., Bauer, G., Bauer, P. C.,
Baumann, M., Baute, S., Benoit, V., Bernauer, J., Berning, C., Berthold, A., … Nguyen, H.
H. V. (2021). Observing many researchers using the same data and hypothesis reveals a
hidden universe of uncertainty. https://doi.org/10.31222/osf.io/cd5j9

Claerbout, J., & Karrenbach, M. (1992). Electronic documents give reproducible research a new
meaning. 601–604. https://doi.org/10.1190/1.1822162

Eglen, S., & Nüst, D. (2019). CODECHECK: An open-science initiative to facilitate sharing
of computer programs and results presented in scientific publications. Septentrio Confer-
ence Series, 1. https://doi.org/10.7557/5.4910

Ficarra, V., Fosci, M., Chiarelli, A., Kramer, B., & Proudman, V. (2020). Scoping the Open
Science Infrastructure Landscape in Europe. Zenodo. https://doi.org/10.5281/zenodo.
4159838

Gentleman, R., & Temple Lang, D. (2007). Statistical analyses and reproducible research.
Journal of Computational and Graphical Statistics, 16(1), 1–23. https://doi.org/10.1198/
106186007X178663

Goodchild, M. F., Fotheringham, A. S., Kedron, P., & Li, W. (2020). Introduction: Forum on
Reproducibility and Replicability in Geography. Annals of the American Association of
Geographers, 1–4. https://doi.org/10.1080/24694452.2020.1806030

Granell, C., Nüst, D., Ostermann, F. O., & Sileryte, R. (2018). Reproducible Research is like
riding a bike. https://doi.org/10.7287/peerj.preprints.27216v1

Granell, C., Sileryte, R., & Nüst, D. (2020). Reproducible graduate theses in GIScience. https:
//doi.org/10.17605/osf.io/wcexy

269

https://doi.org/10.12688/f1000research.23224.2
https://meetingorganizer.copernicus.org/EGU2017/EGU2017-8525.pdf
https://meetingorganizer.copernicus.org/EGU2017/EGU2017-8525.pdf
https://doi.org/10.5311/JOSIS.2020.21.727
https://doi.org/10.31235/osf.io/6j9qb
https://doi.org/10.31222/osf.io/cd5j9
https://doi.org/10.1190/1.1822162
https://doi.org/10.7557/5.4910
https://doi.org/10.5281/zenodo.4159838
https://doi.org/10.5281/zenodo.4159838
https://doi.org/10.1198/106186007X178663
https://doi.org/10.1198/106186007X178663
https://doi.org/10.1080/24694452.2020.1806030
https://doi.org/10.7287/peerj.preprints.27216v1
https://doi.org/10.17605/osf.io/wcexy
https://doi.org/10.17605/osf.io/wcexy

Graupner, A., & Nüst, D. (2020). Serverless GEO labels for the semantic sensor web (K. Janow-
icz & J. A. Verstegen, Eds.; Vol. 177, p. 4:14:14). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.GIScience.2021.I.4

Hauschke, C., Nüst, D., Cordts, A., & Lilienthal, S. (2021). OPTIMETA – Strengthening the
Open Access publishing system through open citations and spatiotemporal metadata.
Research Ideas and Outcomes, 7, e66264. https://doi.org/10.3897/rio.7.e66264

Hrynaszkiewicz, I. (2020). Publishers’ Responsibilities in Promoting Data Quality and Re-
producibility. In A. Bespalov, M. C. Michel, & T. Steckler (Eds.), Good Research Practice
in Non-Clinical Pharmacology and Biomedicine (pp. 319–348). Springer International
Publishing. https://doi.org/10.1007/164_2019_290

Knoth, C., & Nüst, D. (2017). Reproducibility and Practical Adoption of GEOBIA with Open-
Source Software in Docker Containers. Remote Sensing, 9(3), 290. https://doi.org/10.
3390/rs9030290

Konkol, M. (2019). Publishing Reproducible Geoscientific Papers: Status quo, benefits, and
opportunities. https://doi.org/10.31237/osf.io/mcdrn

Konkol, M., & Kray, C. (2019). In-depth examination of spatiotemporal figures in open re-
producible research. Cartography and Geographic Information Science, 46(5), 412–427.
https://doi.org/10.1080/15230406.2018.1512421

Konkol, M., Kray, C., & Pfeiffer, M. (2019). Computational reproducibility in geoscientific
papers: Insights from a series of studies with geoscientists and a reproduction study.
International Journal of Geographical Information Science, 33(2), 408–429. https://doi.org/
10.1080/13658816.2018.1508687

Konkol, M., Kray, C., & Suleiman, J. (2019). Creating Interactive Scientific Publications using
Bindings. Proceedings of the ACM on Human-Computer Interaction, 3(EICS), 16:116:18.
https://doi.org/10.1145/3331158

Konkol, M., Nüst, D., & Goulier, L. (2020). Publishing computational research - a review
of infrastructures for reproducible and transparent scholarly communication. Research
Integrity and Peer Review, 5(1), 10. https://doi.org/10.1186/s41073-020-00095-y

Kray, C., Pebesma, E., Konkol, M., & Nüst, D. (2019). Reproducible Research in Geoinformatics:
Concepts, Challenges and Benefits (Vision Paper) (S. Timpf, C. Schlieder, M. Kattenbeck,
B. Ludwig, & K. Stewart, Eds.; Vol. 142, p. 8:18:13). Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. https://doi.org/10.4230/LIPIcs.COSIT.2019.8

Lohoff, L. (2018). Similarity Measurements for Executable Research Compendia. MSc Geoin-
formatics Thesis, Ifgi, WWU Münster.

Mejlgaard, N., Bouter, L. M., Gaskell, G., Kavouras, P., Allum, N., Bendtsen, A.-K., Charitidis,
C. A., Claesen, N., Dierickx, K., Domaradzka, A., Elizondo, A. R., Foeger, N., Hiney, M.,
Kaltenbrunner, W., Labib, K., Marušić, A., Sørensen, M. P., Ravn, T., Ščepanović, R., Ti-
jdink, J. K., & Veltri, G. A. (2020). Research integrity: Nine ways to move from talk to
walk. Nature, 586(7829), 358–360. https://doi.org/10.1038/d41586-020-02847-8

Minghini, M., Mobasheri, A., Rautenbach, V., & Brovelli, M. A. (2020). Geospatial openness:
From software to standards & data. Open Geospatial Data, Software and Standards, 5(1),
1. https://doi.org/10.1186/s40965-020-0074-y

Mons, B. (2020). Invest 5% of research funds in ensuring data are reusable. Nature, 578(7796),
491–491. https://doi.org/10.1038/d41586-020-00505-7

270

https://doi.org/10.4230/LIPIcs.GIScience.2021.I.4
https://doi.org/10.3897/rio.7.e66264
https://doi.org/10.1007/164_2019_290
https://doi.org/10.3390/rs9030290
https://doi.org/10.3390/rs9030290
https://doi.org/10.31237/osf.io/mcdrn
https://doi.org/10.1080/15230406.2018.1512421
https://doi.org/10.1080/13658816.2018.1508687
https://doi.org/10.1080/13658816.2018.1508687
https://doi.org/10.1145/3331158
https://doi.org/10.1186/s41073-020-00095-y
https://doi.org/10.4230/LIPIcs.COSIT.2019.8
https://doi.org/10.1038/d41586-020-02847-8
https://doi.org/10.1186/s40965-020-0074-y
https://doi.org/10.1038/d41586-020-00505-7

Nichols, J. D., Oli, M. K., Kendall, W. L., & Boomer, G. S. (2021). Opinion: A better approach
for dealing with reproducibility and replicability in science. Proceedings of the National
Academy of Sciences, 118(7). https://doi.org/10.1073/pnas.2100769118

Niers, T. (2020). Geospatial Metadata for Discovery in Scholarly Publishing. MSc
Geoinformatics Thesis, Ifgi, WWU Münster. http://nbn-resolving.de/urn:nbn:de:hbz:6-
69029469735

Niers, T., & Nüst, D. (2020). Geospatial Metadata for Discovery in Scholarly Publishing.
Septentrio Conference Series, 4. https://doi.org/10.7557/5.5590

Nosek, B. (2019). Strategy for Culture Change. COS blog. https://www.cos.io/blog/strategy-
for-culture-change

Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Almenberg, A. D.,
Fidler, F., Hilgard, J., Struhl, M. K., Nuijten, M. B., Rohrer, J. M., Romero, F., Scheel, A.
M., Scherer, L., Schönbrodt, F., & Vazire, S. (2021). Replicability, Robustness, and Repro-
ducibility in Psychological Science. PsyArXiv. https://doi.org/10.31234/osf.io/ksfvq

Nüst, D. (2019a). How to increase reproducibility and transparency in your research. EGU
GeoLog; archived as part of https://doi.org/10.5281/zenodo.1485437. https://blogs.egu.
eu/geolog/2019/02/01/reproducibility-and-transparency-in-research/

Nüst, D. (2021a). Practical reproducibility and reproducibility vs. Peer review. Presented at
Spatial Data Science Hangout (online) by Center for Spatial Studies, University of Cali-
fornia, Santa Barbara, CA, USA. http://bit.ly/hangout21-repro

Nüst, D. (2021b). Executing workflows during peer review for transparency, reproducibility,
and reusability. Presented at Thuringian RDM-Days 2021 (online). https://doi.org/10.
5281/zenodo.5018144

Nüst, D. (2018). Integrating Binder and Stencila – the building blocks to increased open com-
munication and transparency. Cross-posted on eLife blog, Stencila blog and Jupyter blog;
archived as part of https://doi.org/10.5281/zenodo.1485437.

Nüst, D. (2017a). Executable research compendia in geoscience research infrastructures.
Geophysical Research Abstracts, Vol. 19. https://meetingorganizer.copernicus.org/
EGU2017/EGU2017-8525.pdf

Nüst, D. (2017b). Reproducible Research in Geostatistics and Geosciences with Notebooks and
Containers. Course at GEOSTAT Split 2017 Summer School, Split, Croatia. https://doi.
org/10.5281/zenodo.2477154

Nüst, D. (2019b). Packaging Research for Open Scholarship. Presented at Kolloquium des
Lehrstuhls für Geoinformatik, Institut für Geographie, Friedrich Schiller Universität
Jena. https://gitlab.com/nuest/packaging-research-for-open-scholarship

Nüst, D. (2020a). Container images for research librarians 101. Presented at Librarians Build-
ing Momentum for Reproducibility on 2020-01-28, Online, organised by NYI, New York.
https://doi.org/10.17605/osf.io/xta6d

Nüst, D. (2020b). Research compendia enable code review during peer review. Presented at
Remote ReproHack (N8 CIR); slides. https://doi.org/10.5281/zenodo.3855440

Nüst, D. (2021c). A web service for executable research compendia enables reproducible publi-
cations and transparent reviews in geospatial sciences. https://zivgitlab.uni-muenster.de/
d_nues01/architecture-paper/

271

https://doi.org/10.1073/pnas.2100769118
http://nbn-resolving.de/urn:nbn:de:hbz:6-69029469735
http://nbn-resolving.de/urn:nbn:de:hbz:6-69029469735
https://doi.org/10.7557/5.5590
https://www.cos.io/blog/strategy-for-culture-change
https://www.cos.io/blog/strategy-for-culture-change
https://doi.org/10.31234/osf.io/ksfvq
https://doi.org/10.5281/zenodo.1485437
https://blogs.egu.eu/geolog/2019/02/01/reproducibility-and-transparency-in-research/
https://blogs.egu.eu/geolog/2019/02/01/reproducibility-and-transparency-in-research/
http://spatial.ucsb.edu/spatial-data-science-hangout-Spring21/
http://bit.ly/hangout21-repro
https://forschungsdaten-thueringen.de/event/rdm-days-2021-en.html
https://doi.org/10.5281/zenodo.5018144
https://doi.org/10.5281/zenodo.5018144
https://elifesciences.org/labs/d42fe2b9/integrating-binder-and-stencila-the-building-blocks-to-increased-open-communication-and-transparency
https://stenci.la/blog/2018-11-20-stencila-binder/
https://blog.jupyter.org/elife-sprint-integrating-stencila-and-binder-18834e9ad584
https://doi.org/10.5281/zenodo.1485437
https://meetingorganizer.copernicus.org/EGU2017/EGU2017-8525.pdf
https://meetingorganizer.copernicus.org/EGU2017/EGU2017-8525.pdf
https://web.archive.org/web/20180502141742/https://geostat-course.org/2017
https://doi.org/10.5281/zenodo.2477154
https://doi.org/10.5281/zenodo.2477154
https://www.geographie.uni-jena.de/Lehrst%C3%BChle/Geoinformatik.html
https://www.geographie.uni-jena.de/Lehrst%C3%BChle/Geoinformatik.html
https://gitlab.com/nuest/packaging-research-for-open-scholarship
https://vickysteeves.gitlab.io/librarians-reproducibility/
https://vickysteeves.gitlab.io/librarians-reproducibility/
https://doi.org/10.17605/osf.io/xta6d
https://n8cir.org.uk/events/remote-reprohack/
https://codecheck.org.uk/slides/2020-05_ReproHack.html
https://doi.org/10.5281/zenodo.3855440
https://zivgitlab.uni-muenster.de/d_nues01/architecture-paper/
https://zivgitlab.uni-muenster.de/d_nues01/architecture-paper/

Nüst, D. (2021d). AGILE Conference Reproducibility Review 2021 (talk). https://doi.org/10.
5281/ZENODO.4926269

Nüst, D. (2021e). Reproducibility and Peer Review. Presented at Virtual kick off meeting of
the Open Reproducible Data Science and Statistics (ORDS, Graduate Academy of the
University of Rostock) network on 2020-12-01, University of Rostock. https://doi.org/10.
5281/zenodo.4292263

Nüst, D., & Bartoschek, T. (2018). Open Environmental Data Analysis. Geophysical Research
Abstracts, Vol. 20; archived on Zenodo; ERC: https://o2r.uni-muenster.de/erc/PhbIa.
https://doi.org/10.5281/zenodo.1217912

Nüst, D., Boettiger, C., & Eddelbuettel, D. (2018). rocker/geospatial: A flexible runtime envi-
ronment for geoscientific data analysis. Geophysical ResearchAbstracts, Vol. 20; archived
on Zenodo. https://doi.org/10.5281/zenodo.1216751

Nüst, D., Boettiger, C., & Marwick, B. (2018). How to Read a Research Compendium.
arXiv:1806.09525 [Cs]. http://arxiv.org/abs/1806.09525

Nüst, D., Drost, N., Topping, D., & Wyborn, L. (2021). Improving Research Software
in the Geosciences. In EGU General Assembly 2021 Great Debate. Co-sponsored
by EGU and AGU. Materials at https://great-debate-research-software.github.io/.
https://meetingorganizer.copernicus.org/EGU21/session/39993

Nüst, D., Eddelbuettel, D., Bennett, D., Cannoodt, R., Clark, D., Daróczi, G., Edmondson, M.,
Fay, C., Hughes, E., Kjeldgaard, L., Lopp, S., Marwick, B., Nolis, H., Nolis, J., Ooi, H.,
Ram, K., Ross, N., Shepherd, L., Sólymos, P., Swetnam, T. L., Turaga, N., Petegem, C. V.,
Williams, J., Willis, C., & Xiao, N. (2020). The Rockerverse: Packages and Applications
for Containerisation with R. The R Journal, 12(1). https://doi.org/10.32614/RJ-2020-007

Nüst, D., & Eglen, S. J. (2021). CODECHECK: AnOpen Science initiative for the independent
execution of computations underlying research articles during peer review to improve
reproducibility. F1000Research, 10, 253. https://doi.org/10.12688/f1000research.51738.1

Nüst, D., Granell, C., Hofer, B., Konkol, M., Ostermann, F. O., Sileryte, R., & Cerutti, V. (2018).
Reproducible research and GIScience: An evaluation using AGILE conference papers.
PeerJ, 6, e5072. https://doi.org/10.7717/peerj.5072

Nüst, D., & Hinz, M. (2017). Automatically archiving reproducible studies with Docker. Pre-
sented at useR!2017, Brussels, Belgium. https://doi.org/10.5281/zenodo.824007

Nüst, D., & Hinz, M. (2019). Containerit: Generating Dockerfiles for reproducible research
with R. Journal of Open Source Software, 4(40), 1603. https://doi.org/10.21105/joss.01603

Nüst, D., & Konkol, M. (2020). A Vision for Reproducible Research in Geoinformatics, Ge-
ography, and Geosciences. GenR blog. https://genr.eu/wp/a-vision-for-reproducible-
research-in-geoinformatics-geography-and-geosciences/

Nüst, D., Konkol, M., Pebesma, E., Kray, C., Schutzeichel, M., Przibytzin, H., & Lorenz, J.
(2017). Opening the Publication Process with Executable Research Compendia. D-Lib
Magazine, 23(1/2). https://doi.org/10.1045/january2017-nuest

Nüst, D., Kray, C., Pebesma, E., Lorenz, J., Konkol, M., Niers, T., Przibytzin, H., Schutze-
ichel, M., Chaudhary, R., Garzon, J. S., Hinz, M., Jakuschona, N., Koppe, J., Kraft, T.,
Kühnel, T., Lohoff, L., Suleiman, J., & Qamaz, Y. (2018). Reproducibility Service for Exe-
cutable Research Compendia: Technical Specifications and Reference Implementation. Zen-
odo. https://doi.org/10.5281/zenodo.2203844

272

https://doi.org/10.5281/ZENODO.4926269
https://doi.org/10.5281/ZENODO.4926269
https://www.uni-rostock.de/forschung/nachwuchsfoerderung/graduiertenakademie/netzwerke/ords/
https://doi.org/10.5281/zenodo.4292263
https://doi.org/10.5281/zenodo.4292263
https://o2r.uni-muenster.de/erc/PhbIa
https://doi.org/10.5281/zenodo.1217912
https://doi.org/10.5281/zenodo.1216751
http://arxiv.org/abs/1806.09525
https://great-debate-research-software.github.io/
https://meetingorganizer.copernicus.org/EGU21/session/39993
https://doi.org/10.32614/RJ-2020-007
https://doi.org/10.12688/f1000research.51738.1
https://doi.org/10.7717/peerj.5072
https://user2017.brussels/
https://doi.org/10.5281/zenodo.824007
https://doi.org/10.21105/joss.01603
https://genr.eu/wp/a-vision-for-reproducible-research-in-geoinformatics-geography-and-geosciences/
https://genr.eu/wp/a-vision-for-reproducible-research-in-geoinformatics-geography-and-geosciences/
https://doi.org/10.1045/january2017-nuest
https://doi.org/10.5281/zenodo.2203844

Nüst, D., Lohoff, L., Einfeldt, L., Gavish, N., Götza, M., Jaswal, S. T., Khalid, S., Meierkort,
L., Mohr, M., Rendel, C., & Eek, A. van. (2019, June). Guerrilla Badges for Reproducible
Geospatial Data Science (AGILE 2019 Short Paper). https://doi.org/10.31223/osf.io/xtsqh

Nüst, D., Ostermann, F., Granell, C., & Kmoch, A. (2020). Improving reproducibility of
geospatial conference papers – lessons learned from a first implementation of repro-
ducibility reviews. Septentrio Conference Series, 4. https://doi.org/10.7557/5.5601

Nüst, D., Ostermann, F., Sileryte, R., Hofer, B., Granell, C., Teperek, M., Graser, A., Bro-
man, K., Hettne, K., Clare, C., Belliard, F., & Wang, Y. (2021). AGILE Reproducible Paper
Guidelines (December 2020). https://doi.org/10.17605/osf.io/cb7z8

Nüst, D., & Pebesma, E. (2020). Practical reproducibility in geography and geosciences.
Annals of the American Association of Geographers, 0(0), 1–11. https://doi.org/10.1080/
24694452.2020.1806028

Nüst, D., & Schutzeichel, M. (2017, June 12). 20th AGILE Conference for Geo-information
Science. https://doi.org/10.5281/zenodo.1478542

Nüst, D., Schutzeichel, M., & Konkol, M. (2018). Opening Reproducible Research: A research
project website and blog. https://doi.org/10.5281/zenodo.4384840

Nüst, D., Seibold, H., Eglen, S. J., & Schulz-Vanheyden, L. (2021). Code Execution in Peer
Review. https://doi.org/10.17605/osf.io/x32nc

Nüst, D., Sochat, V., Marwick, B., Eglen, S., Head, T., & Hirst, T. (2020). Ten Simple Rules for
Writing Dockerfiles for Reproducible Data Science. https://doi.org/10.31219/osf.io/fsd7t

Ostermann, F. O., Nüst, D., Granell, C., Hofer, B., & Konkol, M. (2020). Reproducible Research
and GIScience: An evaluation using GIScience conference papers. https://doi.org/10.31223/
X5ZK5V

Pebesma, E. J., Kray, C., & Tröger, B. (2020). Opening Reproducible Research II: Infrastruc-
ture for Electronic Publications and Digital Scholarly Communication. Project Proposal.
https://doi.org/10.17879/42149626934

Peer, L., Orr, L. V., & Coppock, A. (2021). ActiveMaintenance: A Proposal for the Long-Term
Computational Reproducibility of Scientific Results. PS: Political Science & Politics, 1–5.
https://doi.org/10.1017/S1049096521000366

Project Jupyter, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T., Holdgraf, C.,
Kelley, K., Nalvarte, G., Osheroff, A., Pacer, M., Panda, Y., Perez, F., Ragan-Kelley, B.,
& Willing, C. (2018). Binder 2.0 - Reproducible, interactive, sharable environments for
science at scale. Proceedings of the 17th Python in Science Conference, 113–120. https:
//doi.org/10.25080/Majora-4af1f417-011

Riet, G. ter, Storosum, B. W. C., & Zwinderman, A. H. (2019). What is reproducibility?
F1000Research, 8, 36. https://doi.org/10.12688/f1000research.17615.1

Rowe, F., Maier, G., Arribas-Bel, D., & Rey, S. (2020). The Potential of Notebooks for Scientific
Publication, Reproducibility and Dissemination. REGION, 7 (3), E1–E5. https://doi.org/
10.18335/region.v7i3.357

Schimanski, L. A., & Alperin, J. P. (2018). The evaluation of scholarship in academic pro-
motion and tenure processes: Past, present, and future. F1000Research, 7, 1605. https:
//doi.org/10.12688/f1000research.16493.1

273

https://doi.org/10.31223/osf.io/xtsqh
https://doi.org/10.7557/5.5601
https://doi.org/10.17605/osf.io/cb7z8
https://doi.org/10.1080/24694452.2020.1806028
https://doi.org/10.1080/24694452.2020.1806028
https://doi.org/10.5281/zenodo.1478542
https://doi.org/10.5281/zenodo.4384840
https://doi.org/10.17605/osf.io/x32nc
https://doi.org/10.31219/osf.io/fsd7t
https://doi.org/10.31223/X5ZK5V
https://doi.org/10.31223/X5ZK5V
https://doi.org/10.17879/42149626934
https://doi.org/10.1017/S1049096521000366
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.12688/f1000research.17615.1
https://doi.org/10.18335/region.v7i3.357
https://doi.org/10.18335/region.v7i3.357
https://doi.org/10.12688/f1000research.16493.1
https://doi.org/10.12688/f1000research.16493.1

Sochat, V., & Nüst, D. (2021). RSE Stories podcast episode ”Are You Interested in Riddles?”.
Download MP3. https://us-rse.org/rse-stories/2021/daniel-nuest/

Steeves, V., Rampin, R., & Nüst, D. (2017). Reproducible computational research in the pub-
lication cycle. OSF; short course at EGU General Assembly 2017; see report. https:
//doi.org/10.17605/osf.io/umy6g

Sunni, I. (2020). Testing geospatial R packages on implementations of the R language and
platforms. MSc Geospatial Technologies. http://hdl.handle.net/10362/95140

University of Southern California, Boeing, G., Arribas-Bel, D., & University of Liverpool.
(2021). GIS and Computational Notebooks. Geographic Information Science & Technology
Body of Knowledge, 2021(Q1). https://doi.org/10.22224/gistbok/2021.1.2

West, J. D., & Bergstrom, C. T. (2021). Misinformation in and about science. Proceedings of
the National Academy of Sciences, 118(15). https://doi.org/10.1073/pnas.1912444117

Wikipedia contributors. (2020). OS-level virtualization. Wikipedia. https://en.wikipedia.
org/w/index.php?title=OS-level_virtualization&oldid=935110975

Wikipedia contributors. (2021). Literate programming. Wikipedia. https://en.wikipedia.org/
w/index.php?title=Literate_programming&oldid=1011343163

https://us-rse.org/rse-stories-episodes-1/2021/rse-stories-daniel-nuest-episode-56.mp3
https://us-rse.org/rse-stories/2021/daniel-nuest/
http://meetingorganizer.copernicus.org/EGU2017/session/25726
https://o2r.info/2017/05/03/egu-short-course-recap/
https://doi.org/10.17605/osf.io/umy6g
https://doi.org/10.17605/osf.io/umy6g
http://hdl.handle.net/10362/95140
https://doi.org/10.22224/gistbok/2021.1.2
https://doi.org/10.1073/pnas.1912444117
https://en.wikipedia.org/w/index.php?title=OS-level_virtualization&oldid=935110975
https://en.wikipedia.org/w/index.php?title=OS-level_virtualization&oldid=935110975
https://en.wikipedia.org/w/index.php?title=Literate_programming&oldid=1011343163
https://en.wikipedia.org/w/index.php?title=Literate_programming&oldid=1011343163

Daniel Nüst
RESEARCHER

 email@danielnuest.de | danielnuest.de | 0000-0002-0024-5046 | nuest | nuest | danielnuest | nordholmen

Daniel is a research software engineer and PhD student at the Institute for Geoinformatics, University of Münster, Germany. He develops tools for reproducible
geoscientific research in the project Opening Reproducible Research (https://o2r.info). Daniel is an advocate for open scholarship and reproducibility.

Date and place of birth: January 2nd, 1984, Gütersloh | Nationality: German

Education
WestfälischeWilhelms‑Universität Münster Münster, DE
PHD 01/2016 (current)

WestfälischeWilhelms‑Universität Münster Institut für Geoinformatik Münster, DE
DiPLOM‑GEOiNFORMATiKER 10/2004 ‑ 11/2011

Gymnasium Verl Verl, DE
ABiTUR 08/1995 ‑ 06/2003

Employment
University of Münster, Institute for Geoinformatics Münster, DE
RESEARCHER iN PROJECT OPENiNG REPRODUCiBLE RESEARCH 01/2016 ‑ 04/2023

52°North Initiative for Geospatial Open Source Software GmbH Münster, DE
CONSULTANT AND DEVELOPER, i.A. iN PROJECTS GEOViQUA (FP7), GLUES (BMBF), CONNECTiNGEO (H2020) 10/2011 ‑ 12/2015

52°North Initiative for Geospatial Open Source Software GmbH Münster, DE
STUDENT ASSiSTANT iN PROJECT GENESIS (FP7) 02/2011 ‑ 09/2011

University of Münster, Institute for Geoinformatics Münster, DE
STUDENT ASSiSTANT iN PROJECT OSIRIS (FP6), LAB TUTOR 11/2009 ‑ 01/2011

Memberships and service
NFDI4Culture Expert:innen‑Forum “Nachhaltige Softwareentwicklung” NFDI4Culture, DE
EXPERT NFDI4CULTURE EXPERT FORUM ON SUSTAiNABLE SOFTWARE DEVELOPMENT 2021 ‑ 2022

Knowledge Exchange Bristol, GB
EXPERT TASK AND FiNiSH GROUP “PUBLiSHiNG REPRODUCiBLE RESEARCH OUTPUT” 2020 ‑ 2021

de‑RSE e.V. ‑ Society for Research Software Berlin, DE
ViCE CHAiR 2018 ‑ 2021

Association of Geographic Information Laboratories in Europe Europe, NL
REPRODUCiBiLiTY COMMiTTEE CHAiR AGILE CONFERENCE 2020 ‑ 2021

Forum Citizen Science Münster, DE
SCiENTiFiC PROGRAMME COMMiTTEE CO‑CHAiR 2019 ‑ 2019

13 reviews conducted for the journals GigaScience, ISPRS International Journal of Geo‑Information, The Journal of Open Source Software, Journal of Geo‑
graphical Systems, The R Journal, Semantic Web, Sustainability, Data Science Journal, and International Journal of Digital Earth.

Funding
Mozilla Foundation (grant number: MF‑1811‑05959) CA, US
CODECHECK 2019 ‑ 2020

Association of Geographic Information Laboratories in Europe (AGILE) Europe, NL
REPRODUCiBLE PUBLiCATiONS AT AGILE CONFERENCES 2019 ‑ 2019

Bundesministerium für Bildung und Forschung (grant number: 16TOA028B) Berlin, DE
STRENGTHENiNG THE OPEN ACCESS PUBLiSHiNG SYSTEM THROUGH OPEN CiTATiONS AND SPATiOTEMPORAL METADATA
(OPTIMETA)

2021 ‑ 2023

Works
A full list of publications can be found at https://orcid.org/0000‑0002‑0024‑5046.

JULi, 2021 DANiEL NÜST · CV/RESUME BASED ON ORCiD.ORG/0000‑0002‑0024‑5046 1

ColopHon
This document is compiled with R Markdown. All source files are published at https://
zivgitlab.uni-muenster.de/d_nues01/phd-package. The current revision is f287175.

Environment:
wkhtmltopdf 0 . 1 2 . 5
−−−−−−−−−−
requiremments . t x t :
p a n f l u t e = = 2 . 0 . 5
python − f r o n tma t t e r = = 1 . 0 . 0

D i a g n o s t i c s Repor t [renv 0 . 1 3 . 2]
================================
##
S e s s i o n I n f o =======================
R v e r s i o n 4 . 1 . 0 (2021 −05 −18)
P l a t f o rm : x86_64 −pc− l inux −gnu (64 − b i t)
Running under : Ubuntu 2 0 . 0 4 LTS
##
Mat r ix p roduc t s : d e f a u l t
BLAS : / u s r / l i b / x86_64 − l inux −gnu / openb las − p th r ead / l i b b l a s . so . 3
LAPACK : / u s r / l i b / x86_64 − l inux −gnu / openb las − p th r ead / l i b l a p a c k . so . 3
##
l o c a l e :
[1] LC_CTYPE=en_US . UTF−8 LC_NUMERIC=C
[3] LC_TIME=de_DE . UTF−8 LC_COLLATE=en_US . UTF−8
[5] LC_MONETARY=de_DE . UTF−8 LC_MESSAGES=en_US . UTF−8
[7] LC_PAPER=de_DE . UTF−8 LC_NAME=de_DE . UTF−8
[9] LC_ADDRESS=de_DE . UTF−8 LC_TELEPHONE=de_DE . UTF−8
[1 1] LC_MEASUREMENT=de_DE . UTF−8 LC_IDENTIFICATION=de_DE . UTF−8
##
a t t a c h e d base packages :
[1] s t a t s g r a ph i c s g rDev i c e s d a t a s e t s u t i l s methods base
##
o the r a t t a c h e d packages :
[1] r o r c i d _ 0 . 7 . 0 g lue_1 . 4 . 2 v i t a e _ 0 . 4 . 2 . 9 0 0 1 j s o n l i t e _ 1 . 7 . 2
[5] g g f i t t e x t _ 0 . 9 . 1 g g a l l u v i a l _ 0 . 1 2 . 3 ggthemes_4 . 2 . 4 f o r c a t s _ 0 . 5 . 1
[9] pu r r r _0 . 3 . 4 r e ad r _1 . 4 . 0 t i d y r _ 1 . 1 . 3 t i b b l e _ 3 . 1 . 2
[1 3] ggp l o t 2 _ 3 . 3 . 3 t i d y v e r s e _ 1 . 3 . 1 wordcloud_2 . 6 RColorBrewer_1 .1 −2
[1 7] quanteda_3 . 0 . 0 dp l y r_1 . 0 . 6 t i d y t e x t _ 0 . 3 . 1 b i b 2 d f _ 1 . 1 . 2
[2 1] s t r i n g r _ 1 . 4 . 0 p d f t o o l s _ 3 . 0 . 1 s t a p l r _ 3 . 1 . 1 here_1 . 0 . 1
##
l oaded v i a a namespace (and not a t t a c h e d) :
[1] f s _ 1 . 5 . 0 l u b r i d a t e _ 1 . 7 . 1 0 h t t r _ 1 . 4 . 2 r p r o j r o o t _ 2 . 0 . 2
[5] Snowbal lC_0 . 7 . 0 t o o l s _ 4 . 1 . 0 b a ckpo r t s _ 1 . 2 . 1 u t f 8 _ 1 . 2 . 1
[9] R6_2 . 5 . 0 DBI_1 . 1 . 1 c o l o r s p a c e _ 2 .0 −1 wi th r_2 . 4 . 2
[1 3] t i d y s e l e c t _ 1 . 1 . 1 c u r l _ 4 . 3 . 1 comp i l e r _4 . 1 . 0 c l i _ 2 . 5 . 0
[1 7] r v e s t _ 1 . 0 . 0 xml2_1 . 3 . 2 humaniformat_0 . 6 . 0 t r i e b e a r d _ 0 . 3 . 0
[2 1] l a b e l i n g _ 0 . 4 . 2 bookdown_0 . 2 2 s c a l e s _ 1 . 1 . 1 a skpa s s_1 . 1
[2 5] d i g e s t _ 0 . 6 . 2 7 rmarkdown_2 . 8 pkgcon f i g_2 . 0 . 3 h tm l t o o l s _ 0 . 5 . 1 . 1
[2 9] dbp ly r_2 . 1 . 1 r l ang_0 . 4 . 1 1 r e a d x l _ 1 . 3 . 1 h t t p code_0 . 3 . 0
[3 3] r s t u d i o a p i _ 0 . 1 3 g e n e r i c s _ 0 . 1 . 0 f a r v e r _ 2 . 1 . 0 t o k e n i z e r s _ 0 . 2 . 1
[3 7] mag r i t t r _ 2 . 0 . 1 f auxpas_0 . 5 . 0 Mat r ix_1 .3 −4 Rcpp_1 . 0 . 6
[4 1] munse l l _0 . 5 . 0 f a n s i _ 0 . 5 . 0 l i f e c y c l e _ 1 . 0 . 0 whisker_0 . 4
[4 5] s t r i n g i _ 1 . 6 . 2 yaml_2 . 2 . 1 g r i d _ 4 . 1 . 0 crayon_1 . 4 . 1
[4 9] l a t t i c e _ 0 . 20 −44 haven_2 . 4 . 1 hms_1 . 1 . 0 k n i t r _ 1 . 3 3
[5 3] p i l l a r _ 1 . 6 . 1 t c l t k _ 4 . 1 . 0 c o d e t o o l s _ 0 .2 −18 s topwords_2 . 2
[5 7] f a s tma t ch_1 .1 −0 c r u l _ 1 . 1 . 0 r ep r ex_2 . 0 . 0 e v a l u a t e _ 0 . 1 4
[6 1] qpdf_1 . 1 renv_0 . 1 3 . 2 R c p pP a r a l l e l _ 5 . 1 . 4 modelr_0 . 1 . 8
[6 5] u r l t o o l s _ 1 . 7 . 3 v c t r s _ 0 . 3 . 8 c e l l r a n g e r _ 1 . 1 . 0 g t a b l e _ 0 . 3 . 0
[6 9] a s s e r t t h a t _ 0 . 2 . 1 xfun_0 . 2 3 broom_0 . 7 . 6 j a n e au s t e n r _ 0 . 1 . 5
[7 3] r J a v a _ 1 .0 −4 t i n y t e x _ 0 . 3 2 e l l i p s i s _ 0 . 3 . 2
##
P r o j e c t ============================
P r o j e c t path : ” ~ / g i t / phd−package ”
##
S t a t u s =============================
∗ The p r o j e c t i s a l r e a d y synch ron i z ed with the l o c k f i l e .
##
Packages ===========================
L i b r a r y Source L o c k f i l e Source Path Dependency
BH 1 . 7 5 . 0 − 0 CRAN 1 . 7 5 . 0 − 0 CRAN [1] i n d i r e c t
DBI 1 . 1 . 1 CRAN 1 . 1 . 1 CRAN [1] i n d i r e c t
ISOcodes 2 0 2 1 . 0 2 . 2 4 CRAN 2 0 2 1 . 0 2 . 2 4 CRAN [1] i n d i r e c t
KernSmooth 2 . 23 −20 CRAN <NA> <NA> [2] <NA>
MASS 7 .3 −54 CRAN 7 .3 −54 CRAN [2] i n d i r e c t
Mat r ix 1 .3 −4 CRAN 1 .3 −4 CRAN [2] i n d i r e c t
R6 2 . 5 . 0 CRAN 2 . 5 . 0 CRAN [1] i n d i r e c t
RColorBrewer 1 .1 −2 CRAN 1 .1 −2 CRAN [1] d i r e c t
Rcpp 1 . 0 . 6 CRAN 1 . 0 . 6 CRAN [1] i n d i r e c t
RcppArmadi l lo 0 . 1 0 . 5 . 0 . 0 CRAN 0 . 1 0 . 5 . 0 . 0 CRAN [1] i n d i r e c t
R c p p P a r a l l e l 5 . 1 . 4 CRAN 5 . 1 . 4 CRAN [1] i n d i r e c t
Snowbal lC 0 . 7 . 0 CRAN 0 . 7 . 0 CRAN [1] i n d i r e c t
XML 3 . 9 9 − 0 . 6 CRAN 3 . 9 9 − 0 . 6 CRAN [1] i n d i r e c t
a skpa s s 1 . 1 CRAN 1 . 1 CRAN [1] i n d i r e c t
a s s e r t t h a t 0 . 2 . 1 CRAN 0 . 2 . 1 CRAN [1] i n d i r e c t
b a ckpo r t s 1 . 2 . 1 CRAN 1 . 2 . 1 CRAN [1] i n d i r e c t
base64enc 0 .1 −3 CRAN 0 .1 −3 CRAN [1] i n d i r e c t
b i b 2 d f 1 . 1 . 2 GitHub 1 . 1 . 2 GitHub [1] d i r e c t
b lob 1 . 2 . 1 CRAN 1 . 2 . 1 CRAN [1] i n d i r e c t
bookdown 0 . 2 2 CRAN 0 . 2 2 CRAN [1] d i r e c t
boot 1 . 3 −28 CRAN <NA> <NA> [2] <NA>
brew 1 .0 −6 CRAN <NA> <NA> [1] <NA>
b r i o 1 . 1 . 2 CRAN <NA> <NA> [1] <NA>
broom 0 . 7 . 6 CRAN 0 . 7 . 6 CRAN [1] i n d i r e c t

279

https://zivgitlab.uni-muenster.de/d_nues01/phd-package
https://zivgitlab.uni-muenster.de/d_nues01/phd-package

b s l i b 0 . 2 . 5 . 1 CRAN <NA> <NA> [1] <NA>
cachem 1 . 0 . 5 CRAN <NA> <NA> [1] <NA>
c a l l r 3 . 7 . 0 CRAN 3 . 7 . 0 CRAN [1] i n d i r e c t
c e l l r a n g e r 1 . 1 . 0 CRAN 1 . 1 . 0 CRAN [1] i n d i r e c t
c l a s s 7 . 3 −19 CRAN <NA> <NA> [2] <NA>
c l a s s I n t 0 . 4 −3 CRAN <NA> <NA> [1] <NA>
c l i 2 . 5 . 0 CRAN 2 . 5 . 0 CRAN [1] i n d i r e c t
c l i p r 0 . 7 . 1 CRAN 0 . 7 . 1 CRAN [1] i n d i r e c t
c l u s t e r 2 . 1 . 2 CRAN <NA> <NA> [2] <NA>
c o d e t o o l s 0 . 2 −18 CRAN <NA> <NA> [2] <NA>
c o l o r s p a c e 2 .0 −1 CRAN 2 .0 −1 CRAN [1] i n d i r e c t
commonmark 1 . 7 CRAN <NA> <NA> [1] <NA>
cpp11 0 . 2 . 7 CRAN 0 . 2 . 7 CRAN [1] i n d i r e c t
crayon 1 . 4 . 1 CRAN 1 . 4 . 1 CRAN [1] i n d i r e c t
c r e d e n t i a l s 1 . 3 . 0 CRAN <NA> <NA> [1] <NA>
c r o s s t a l k 1 . 1 . 1 CRAN <NA> <NA> [1] <NA>
c r u l 1 . 1 . 0 CRAN 1 . 1 . 0 CRAN [1] i n d i r e c t
c u r l 4 . 3 . 1 CRAN 4 . 3 . 1 CRAN [1] i n d i r e c t
da t a . t a b l e 1 . 1 4 . 0 CRAN 1 . 1 4 . 0 CRAN [1] i n d i r e c t
dbp ly r 2 . 1 . 1 CRAN 2 . 1 . 1 CRAN [1] i n d i r e c t
desc 1 . 3 . 0 CRAN <NA> <NA> [1] <NA>
d i f f o b j 0 . 3 . 4 CRAN <NA> <NA> [1] <NA>
d i g e s t 0 . 6 . 2 7 CRAN 0 . 6 . 2 7 CRAN [1] i n d i r e c t
dp l y r 1 . 0 . 6 CRAN 1 . 0 . 6 CRAN [1] d i r e c t
d t p l y r 1 . 1 . 0 CRAN 1 . 1 . 0 CRAN [1] i n d i r e c t
e1071 1 .7 −7 CRAN <NA> <NA> [1] <NA>
e l l i p s i s 0 . 3 . 2 CRAN 0 . 3 . 2 CRAN [1] i n d i r e c t
e v a l u a t e 0 . 1 4 CRAN 0 . 1 4 CRAN [1] i n d i r e c t
f a n s i 0 . 5 . 0 CRAN 0 . 5 . 0 CRAN [1] i n d i r e c t
f a r v e r 2 . 1 . 0 CRAN 2 . 1 . 0 CRAN [1] i n d i r e c t
fas tmap 1 . 1 . 0 CRAN <NA> <NA> [1] <NA>
f a s tma t ch 1 .1 −0 CRAN 1 .1 −0 CRAN [1] i n d i r e c t
f auxpa s 0 . 5 . 0 CRAN 0 . 5 . 0 CRAN [1] i n d i r e c t
f o r c a t s 0 . 5 . 1 CRAN 0 . 5 . 1 CRAN [1] d i r e c t
f o r e i g n 0 .8 −81 CRAN <NA> <NA> [2] <NA>
f s 1 . 5 . 0 CRAN 1 . 5 . 0 CRAN [1] i n d i r e c t
g a r g l e 1 . 1 . 0 CRAN 1 . 1 . 0 CRAN [1] i n d i r e c t
g e n e r i c s 0 . 1 . 0 CRAN 0 . 1 . 0 CRAN [1] i n d i r e c t
g e r t 1 . 3 . 0 CRAN <NA> <NA> [1] <NA>
g g a l l u v i a l 0 . 1 2 . 3 CRAN 0 . 1 2 . 3 CRAN [1] d i r e c t
g g f i t t e x t 0 . 9 . 1 CRAN 0 . 9 . 1 CRAN [1] d i r e c t
ggp l o t 2 3 . 3 . 3 CRAN 3 . 3 . 3 CRAN [1] d i r e c t
ggthemes 4 . 2 . 4 CRAN 4 . 2 . 4 CRAN [1] d i r e c t
gh 1 . 3 . 0 CRAN <NA> <NA> [1] <NA>
g i t c r e d s 0 . 1 . 1 CRAN <NA> <NA> [1] <NA>
g lue 1 . 4 . 2 CRAN 1 . 4 . 2 CRAN [1] d i r e c t
g o og l e d r i v e 1 . 0 . 1 CRAN 1 . 0 . 1 CRAN [1] i n d i r e c t
g o og l e s h e e t s 4 0 . 3 . 0 CRAN 0 . 3 . 0 CRAN [1] i n d i r e c t
g rDev i c e s <NA> <NA> <NA> <NA> [2] i n d i r e c t
g r a ph i c s <NA> <NA> <NA> <NA> [2] i n d i r e c t
g r i d <NA> <NA> <NA> <NA> [2] i n d i r e c t
g t a b l e 0 . 3 . 0 CRAN 0 . 3 . 0 CRAN [1] i n d i r e c t
haven 2 . 4 . 1 CRAN 2 . 4 . 1 CRAN [1] i n d i r e c t
here 1 . 0 . 1 CRAN 1 . 0 . 1 CRAN [1] d i r e c t
h igh r 0 . 9 CRAN 0 . 9 CRAN [1] i n d i r e c t
hms 1 . 1 . 0 CRAN 1 . 1 . 0 CRAN [1] i n d i r e c t
h tm l t o o l s 0 . 5 . 1 . 1 CRAN 0 . 5 . 1 . 1 CRAN [1] i n d i r e c t
h tmlwidge t s 1 . 5 . 3 CRAN <NA> <NA> [1] <NA>
h t t p code 0 . 3 . 0 CRAN 0 . 3 . 0 CRAN [1] i n d i r e c t
h t tpuv 1 . 6 . 1 CRAN <NA> <NA> [1] <NA>
h t t r 1 . 4 . 2 CRAN 1 . 4 . 2 CRAN [1] i n d i r e c t
humaniformat 0 . 6 . 0 CRAN 0 . 6 . 0 CRAN [1] i n d i r e c t
hun sp e l l 3 . 0 . 1 CRAN 3 . 0 . 1 CRAN [1] i n d i r e c t
i d s 1 . 0 . 1 CRAN 1 . 0 . 1 CRAN [1] i n d i r e c t
i n i 0 . 3 . 1 CRAN <NA> <NA> [1] <NA>
i soband 0 . 2 . 4 CRAN 0 . 2 . 4 CRAN [1] i n d i r e c t
j a n e a u s t e n r 0 . 1 . 5 CRAN 0 . 1 . 5 CRAN [1] i n d i r e c t
j q u e r y l i b 0 . 1 . 4 CRAN <NA> <NA> [1] <NA>
j s o n l i t e 1 . 7 . 2 CRAN 1 . 7 . 2 CRAN [1] d i r e c t
k n i t r 1 . 3 3 CRAN 1 . 3 3 CRAN [1] d i r e c t
koRpus 0 . 13 −8 CRAN <NA> <NA> [1] <NA>
koRpus . l ang . en 0 .1 −4 CRAN <NA> <NA> [1] <NA>
l a b e l i n g 0 . 4 . 2 CRAN 0 . 4 . 2 CRAN [1] i n d i r e c t
l a t e r 1 . 2 . 0 CRAN <NA> <NA> [1] <NA>
l a t t i c e 0 . 20 −44 CRAN 0 .20 −44 CRAN [2] i n d i r e c t
l a z y e v a l 0 . 2 . 2 CRAN 0 . 2 . 2 CRAN [1] i n d i r e c t
l i f e c y c l e 1 . 0 . 0 CRAN 1 . 0 . 0 CRAN [1] i n d i r e c t
l u b r i d a t e 1 . 7 . 1 0 CRAN 1 . 7 . 1 0 CRAN [1] i n d i r e c t
ma g r i t t r 2 . 0 . 1 CRAN 2 . 0 . 1 CRAN [1] i n d i r e c t
markdown 1 . 1 CRAN 1 . 1 CRAN [1] i n d i r e c t
memoise 2 . 0 . 0 CRAN <NA> <NA> [1] <NA>
methods <NA> <NA> <NA> <NA> [2] i n d i r e c t
mgcv 1 .8 −36 CRAN 1 .8 −36 CRAN [2] i n d i r e c t
mime 0 . 1 0 CRAN 0 . 1 0 CRAN [1] i n d i r e c t
miniUI 0 . 1 . 1 . 1 CRAN <NA> <NA> [1] <NA>
modelr 0 . 1 . 8 CRAN 0 . 1 . 8 CRAN [1] i n d i r e c t
munse l l 0 . 5 . 0 CRAN 0 . 5 . 0 CRAN [1] i n d i r e c t
nlme 3 .1 −152 CRAN 3 .1 −152 CRAN [2] i n d i r e c t
nnet 7 . 3 −16 CRAN <NA> <NA> [2] <NA>
open s s l 1 . 4 . 4 CRAN 1 . 4 . 4 CRAN [1] i n d i r e c t
p d f t o o l s 3 . 0 . 1 CRAN 3 . 0 . 1 CRAN [1] d i r e c t
p i l l a r 1 . 6 . 1 CRAN 1 . 6 . 1 CRAN [1] i n d i r e c t
pkgbu i l d 1 . 2 . 0 CRAN <NA> <NA> [1] <NA>
pkgcon f i g 2 . 0 . 3 CRAN 2 . 0 . 3 CRAN [1] i n d i r e c t
pkg load 1 . 2 . 1 CRAN <NA> <NA> [1] <NA>
p l y r 1 . 8 . 6 CRAN <NA> <NA> [1] <NA>
p r a i s e 1 . 0 . 0 CRAN <NA> <NA> [1] <NA>
p r e t t y u n i t s 1 . 1 . 1 CRAN 1 . 1 . 1 CRAN [1] i n d i r e c t
p r o c e s s x 3 . 5 . 2 CRAN 3 . 5 . 2 CRAN [1] i n d i r e c t
p r o g r e s s 1 . 2 . 2 CRAN 1 . 2 . 2 CRAN [1] i n d i r e c t
promise s 1 . 2 . 0 . 1 CRAN <NA> <NA> [1] <NA>

280

proxy 0 .4 −26 CRAN <NA> <NA> [1] <NA>
ps 1 . 6 . 0 CRAN 1 . 6 . 0 CRAN [1] i n d i r e c t
pu r r r 0 . 3 . 4 CRAN 0 . 3 . 4 CRAN [1] i n d i r e c t
qpdf 1 . 1 CRAN 1 . 1 CRAN [1] i n d i r e c t
quanteda 3 . 0 . 0 CRAN 3 . 0 . 0 CRAN [1] d i r e c t
r J a v a 1 .0 −4 CRAN 1 .0 −4 CRAN [1] i n d i r e c t
r a p p d i r s 0 . 3 . 3 CRAN 0 . 3 . 3 CRAN [1] i n d i r e c t
rcmdcheck 1 . 3 . 3 CRAN <NA> <NA> [1] <NA>
r e ad r 1 . 4 . 0 CRAN 1 . 4 . 0 CRAN [1] d i r e c t
r e a d x l 1 . 3 . 1 CRAN 1 . 3 . 1 CRAN [1] i n d i r e c t
rematch 1 . 0 . 1 CRAN 1 . 0 . 1 CRAN [1] i n d i r e c t
rematch2 2 . 1 . 2 CRAN 2 . 1 . 2 CRAN [1] i n d i r e c t
remotes 2 . 4 . 0 CRAN <NA> <NA> [1] <NA>
renv 0 . 1 3 . 2 CRAN 0 . 1 3 . 2 CRAN [1] d i r e c t
r ep r ex 2 . 0 . 0 CRAN 2 . 0 . 0 CRAN [1] i n d i r e c t
r l a ng 0 . 4 . 1 1 CRAN 0 . 4 . 1 1 CRAN [1] i n d i r e c t
rmarkdown 2 . 8 CRAN 2 . 8 CRAN [1] d i r e c t
r o r c i d 0 . 7 . 0 CRAN 0 . 7 . 0 CRAN [1] d i r e c t
roxygen2 7 . 1 . 1 CRAN <NA> <NA> [1] <NA>
r p a r t 4 . 1 −15 CRAN <NA> <NA> [2] <NA>
r p r o j r o o t 2 . 0 . 2 CRAN 2 . 0 . 2 CRAN [1] i n d i r e c t
r s t u d i o a p i 0 . 1 3 CRAN 0 . 1 3 CRAN [1] i n d i r e c t
r v e r s i o n s 2 . 1 . 1 CRAN <NA> <NA> [1] <NA>
r v e s t 1 . 0 . 0 CRAN 1 . 0 . 0 CRAN [1] i n d i r e c t
s2 1 . 0 . 6 CRAN <NA> <NA> [1] <NA>
s a s s 0 . 4 . 0 CRAN <NA> <NA> [1] <NA>
s c a l e s 1 . 1 . 1 CRAN 1 . 1 . 1 CRAN [1] i n d i r e c t
s e l e c t r 0 . 4 −2 CRAN 0 .4 −2 CRAN [1] i n d i r e c t
s e s s i o n i n f o 1 . 1 . 1 CRAN <NA> <NA> [1] <NA>
shades 1 . 4 . 0 CRAN 1 . 4 . 0 CRAN [1] i n d i r e c t
sh iny 1 . 6 . 0 CRAN <NA> <NA> [1] <NA>
s o u r c e t o o l s 0 . 1 . 7 CRAN <NA> <NA> [1] <NA>
sp 1 .4 −5 CRAN <NA> <NA> [1] <NA>
s p a t i a l 7 . 3 −12 CRAN <NA> <NA> [2] <NA>
s p l i n e s <NA> <NA> <NA> <NA> [2] i n d i r e c t
s t a p l r 3 . 1 . 1 CRAN 3 . 1 . 1 CRAN [1] d i r e c t
s t a t s <NA> <NA> <NA> <NA> [2] i n d i r e c t
s topwords 2 . 2 CRAN 2 . 2 CRAN [1] i n d i r e c t
s t r i n g i 1 . 6 . 2 CRAN 1 . 6 . 2 CRAN [1] i n d i r e c t
s t r i n g r 1 . 4 . 0 CRAN 1 . 4 . 0 CRAN [1] d i r e c t
s u r v i v a l 3 . 2 −11 CRAN <NA> <NA> [2] <NA>
s y l l y 0 .1 −6 CRAN <NA> <NA> [1] <NA>
s y l l y . en 0 .1 −3 CRAN <NA> <NA> [1] <NA>
sys 3 . 4 CRAN 3 . 4 CRAN [1] i n d i r e c t
t c l t k <NA> <NA> <NA> <NA> [2] i n d i r e c t
t e s t t h a t 3 . 0 . 3 CRAN <NA> <NA> [1] <NA>
t i b b l e 3 . 1 . 2 CRAN 3 . 1 . 2 CRAN [1] d i r e c t
t i d y r 1 . 1 . 3 CRAN 1 . 1 . 3 CRAN [1] d i r e c t
t i d y s e l e c t 1 . 1 . 1 CRAN 1 . 1 . 1 CRAN [1] i n d i r e c t
t i d y t e x t 0 . 3 . 1 CRAN 0 . 3 . 1 CRAN [1] d i r e c t
t i d y v e r s e 1 . 3 . 1 CRAN 1 . 3 . 1 CRAN [1] d i r e c t
t i n y t e x 0 . 3 2 CRAN 0 . 3 2 CRAN [1] i n d i r e c t
t o k e n i z e r s 0 . 2 . 1 CRAN 0 . 2 . 1 CRAN [1] i n d i r e c t
t o o l s <NA> <NA> <NA> <NA> [2] i n d i r e c t
t r i e b e a r d 0 . 3 . 0 CRAN 0 . 3 . 0 CRAN [1] i n d i r e c t
u r l t o o l s 1 . 7 . 3 CRAN 1 . 7 . 3 CRAN [1] i n d i r e c t
u s e t h i s 2 . 0 . 1 CRAN <NA> <NA> [1] <NA>
u t f 8 1 . 2 . 1 CRAN 1 . 2 . 1 CRAN [1] i n d i r e c t
u t i l s <NA> <NA> <NA> <NA> [2] d i r e c t
uuid 0 .1 −4 CRAN 0 .1 −4 CRAN [1] i n d i r e c t
v c t r s 0 . 3 . 8 CRAN 0 . 3 . 8 CRAN [1] i n d i r e c t
v i r i d i s L i t e 0 . 4 . 0 CRAN 0 . 4 . 0 CRAN [1] i n d i r e c t
v i t a e 0 . 4 . 2 . 9 0 0 1 GitHub 0 . 4 . 2 . 9 0 0 1 GitHub [1] d i r e c t
waldo 0 . 2 . 5 CRAN <NA> <NA> [1] <NA>
whisker 0 . 4 CRAN 0 . 4 CRAN [1] i n d i r e c t
wi th r 2 . 4 . 2 CRAN 2 . 4 . 2 CRAN [1] i n d i r e c t
wk 0 . 4 . 1 CRAN <NA> <NA> [1] <NA>
wordcloud 2 . 6 CRAN 2 . 6 CRAN [1] d i r e c t
wordcountaddin 0 . 3 . 0 . 9 0 0 0 GitHub <NA> <NA> [1] <NA>
xfun 0 . 2 3 CRAN 0 . 2 3 CRAN [1] i n d i r e c t
xml2 1 . 3 . 2 CRAN 1 . 3 . 2 CRAN [1] i n d i r e c t
xopen 1 . 0 . 0 CRAN <NA> <NA> [1] <NA>
x t a b l e 1 . 8 −4 CRAN <NA> <NA> [1] <NA>
yaml 2 . 2 . 1 CRAN 2 . 2 . 1 CRAN [1] i n d i r e c t
z i p 2 . 2 . 0 CRAN <NA> <NA> [1] <NA>
##
[1] : / home / d a n i e l / g i t / phd−package / renv / l i b r a r y /R − 4 . 1 / x86_64 −pc− l inux −gnu
[2] : / tmp / RtmpDn0EfB / renv −system − l i b r a r y
##
User P r o f i l e =======================
Source Package Requ i r e Ver s i on Dev
1 / home / d a n i e l / . R p r o f i l e d ad j ok e ap i FALSE
2 / home / d a n i e l / . R p r o f i l e u t i l s FALSE
##
S e t t i n g s ===========================
L i s t o f 8
$ e x t e r n a l . l i b r a r i e s : chr (0)
$ i gno red . packages : chr (0)
$ package . dependency . f i e l d s : chr [1 : 3] ” Impor t s ” ” Depends ” ” L ink ingTo ”
$ r . v e r s i o n : chr (0)
$ snapsho t . type : chr ” i m p l i c i t ”
$ use . cache : l o g i TRUE
$ vcs . i gno r e . l i b r a r y : l o g i TRUE
$ vcs . i gno r e . l o c a l : l o g i TRUE
##
Opt ions ============================
L i s t o f 6
$ d e f a u l t P a c k a g e s : chr [1 : 6] ” d a t a s e t s ” ” u t i l s ” ” g rDev i c e s ” ” g r a ph i c s ” . . .
$ download . f i l e . method : NULL
$ download . f i l e . e x t r a : NULL
$ repos : Named chr ” h t t p s : / / c l oud . r − p r o j e c t . org ”

281

. . − a t t r (∗ , ” names ”) = chr ”CRAN”
$ renv . consen t : l o g i TRUE
$ renv . ve rbo se : l o g i TRUE
##
Environment V a r i a b l e s ==============
HOME = / home / d a n i e l
LANG = en_US . UTF−8
R_LIBS = / home / d a n i e l / g i t / phd−package / renv / l i b r a r y /R − 4 . 1 / x86_64 −pc− l inux −gnu : / tmp / RtmpMqpjLb / renv −

system − l i b r a r y
R_LIBS_SITE = / us r / l o c a l / l i b / R / s i t e − l i b r a r y : / u s r / l i b / R / s i t e − l i b r a r y : / u s r / l i b / R / l i b r a r y
R_LIBS_USER = / home / d a n i e l / g i t / phd−package / renv / l i b r a r y /R − 4 . 1 / x86_64 −pc− l inux −gnu : / tmp / RtmpDn0EfB / renv −

system − l i b r a r y
RENV_DEFAULT_R_ENVIRON = <NA>
RENV_DEFAULT_R_ENVIRON_USER = <NA>
RENV_DEFAULT_R_LIBS = <NA>
RENV_DEFAULT_R_LIBS_SITE = / us r / l o c a l / l i b / R / s i t e − l i b r a r y : / u s r / l i b / R / s i t e − l i b r a r y : / u s r / l i b / R / l i b r a r y
RENV_DEFAULT_R_LIBS_USER = ~ /R / x86_64 −pc− l inux −gnu− l i b r a r y / 4 . 1
RENV_DEFAULT_R_PROFILE = <NA>
RENV_DEFAULT_R_PROFILE_USER = <NA>
RENV_PROJECT = / home / d a n i e l / g i t / phd−package
##
PATH ===============================
− / home / d a n i e l / . poe t ry / b in
− / home / d a n i e l / . rvm / gems / ruby − 2 . 7 . 1 / b in
− / home / d a n i e l / . rvm / gems / ruby − 2 . 7 . 1 @global / b in
− / home / d a n i e l / . rvm / r u b i e s / ruby − 2 . 7 . 1 / b in
− / home / l inuxbrew / . l i nuxbrew / b in
− / home / d a n i e l / . l o c a l / b in
− / home / d a n i e l / b in
− / us r / l o c a l / s b i n
− / us r / l o c a l / b in
− / us r / s b i n
− / us r / b in
− / s b i n
− / b in
− / us r / games
− / us r / l o c a l / games
− / snap / b in
− / home / d a n i e l / . rvm / b in
− / us r / l i b / r s t u d i o / b in / po s t back
##
Cache ==============================
There a r e a t o t a l o f 182 package (s) i n s t a l l e d in the renv cache .
Cache path : ” ~ / . l o c a l / sha r e / renv / cache / v5 /R − 4 . 1 / x86_64 −pc− l inux −gnu ”

282

	Acknowledgement
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Scope
	Infrastructure & user experience
	Communities, incentives & policy

	List of publications
	Infrastructure & user experience
	Communities, incentives & policy

	Opening the publication process with executable research compendia
	Reproducibility and practical adoption of GEOBIA with open-source software in Docker containers
	A Web service for executable research compendia enables reproducible publications and transparent reviews in geospatial sciences
	Publishing computational research - a review of infrastructures for reproducible and transparent scholarly communication
	containerit: generating Dockerfiles for reproducible research with R
	Ten simple rules for writing Dockerfiles for reproducible data science
	The Rockerverse: Packages and applications for containerisation with R
	Practical reproducibility in geography and geosciences
	Reproducible research and GIScience: An evaluation using AGILE conference papers
	Reproducible research and GIScience: An evaluation using GIScience conference papers
	CODECHECK: An Open Science initiative for the independent execution of computations underlying research articles during peer review to improve reproducibility
	Geospatial metadata for discovery in scholarly publishing
	Guerrilla badges for geoscience research packages
	How to read a research compendium
	Synopsis
	Infrastructure & user experience
	Communities, incentives & policy
	Conclusion
	Outlook

	References
	CV
	Colophon

