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THE URBAN DIVIDE
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WHAT DO WE KNOW ABOUT GLOBAL SLUM DEVELOPMENTS
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= 15 years of slum mapping using remote sensing
(Kuffer, Pfeffer and Sliuzas, 2016)

@ » Based on 87 publications selected and reviewed
sve UNIVERSITY OF TWENTE.



WHY DO WE NEED DATA ON SLUMS?

A planned road will bisect Kibera slum in Nairobi, displacing thousands of people.

Source: Johnny Miller - http://unequalscenes.com/nairobi
sve UNIVERSITY OF TWENTE. JURSE 2017, Dubai, UAE



WHERE ARE THE POOR - DEPRIVED - SLUMS?

MUMBAI
* Municipal data often not up-to-date
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MAPPING SLUMS FROM SPACE

VERY-HIGH-RESOLUTION SENSORS
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MORPHOLOGY OF SLUMS - FROM SPACE

Density o

.

Site °
Characteristics

UNIVERSITY OF TWENTE.

Small building sizes

High densities (roof coverage)

Lack of public (green) spaces

Organic layout structure

Hazardous locations

Access to livelihood
opportunities

Features Slums MERIELIEEES

Generally larger building sizes

Low — moderate density areas

Provision of public (green spaces)

Regular layout pattern

Formal development with services
and infrastructure provision



WHAT IS SPECIFIC TO SLUMS — AN HOW MUCH DO THEY DIFFER?
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sfan 1 SR Cairo, Egypt

Dar es Salaam
Tanzania
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Size, shape, height, type,
maintenance and material of
dwelling

 TYPOLOGY OF
' DEPRIVED AREAS

. Land/Site
~ Characteristics

Land tenure, land cover/use,
opography, size, density, services,
location, and proximity to hazards

History, development process (e.g.,
collective/organized occupations)

1Tc permanency, segregation




DYNAMICS OF SLUMS - BANGALORE (DYNASLUM PROJECT)

Decision Support System for policy makers and urban planners to understand how,

when and where slums grow in developing countries.
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D) 2015

C) 2013

Emergence and Growth of a
slum in Huidi, Bangalore
(red polygon).

a)

d)

Slums emerge near a
construction Site iIn
2008.

Slum grows near the
same site.

Slum disappear when
construction IS
complete in 2013.

A slum re-emerge at the

same site in 2014
(Images— Google
Earth).

1. Ranguelova, E.; Kuffer, M.; Pfeffer, K.R., R.; Lees, M.H. Image based classification of slums,
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built-up and non-built-up areas in Kalyan, India. In EARSeL Symposium, Prague, 2017.

https://www.esciencecenter.nl/project/dynasium



https://www.esciencecenter.nl/project/dynaslum

ACHIEVEMENTS AND CHALLENGES

Image / spatial feature Methods

Information levels
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REPORTED ACCURACIES OF AUTOMATED SLUM
DETECTION METHODS
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@ Methods
| 2. Kuffer, M.; Pfeffer, K.; Sliuzas, R. Slums from space—15 years of
svc  UNIVERSITY OF TWENTE. slum mapping using remote sensing. Remote Sens. 2016, 8, 455.



UNCERTAINTIES IN THE REFERENCE DATA FOR
CLASSIFICATION ACCURACIES , -
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of the generic slum ontology. In GEOBIA 2016; Enschede, The Netherlands, 2016. UNIVERSITY OF TWENTE.
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OBIA - OBJECT BASED IMAGE ANALYSIS

is made explicit by

4. Blaschke, T. et al. Geographic object-based image analysis—Towards a
new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180-191.

svc  UNIVERSITY OF TWENTE.



SLUM ONTOLOGY
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sre UNIVERSITY OF TWENTE. 5. Kohli, D.; Sliuzas, R.V.; Kerle, N.; Stein, A. An ontology of slums for image-
based classification. Comput. Environ. Urban Syst. 2012, 36, 154-163.



MACHINE LEARNING
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DEEP LEARNING APPROACH

Deep learning methods such as Convolutional Neural Networks
can automatically learn spatial features from the input image.

VHR Image Convolutional Neural Network Detection map
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, Feature | ! :
, Learning ' — 1 Classification !
1 1 1 |
1 1 1 |

____________
______________

Training
Samples

from VHR Satellite Images using Convolutional Neural Networks, IGARSS 2017.

E 6. N. Mboga, C. Persello, J.R. Bergado, A. Stein, “Detection of Informal Settlements
sxec  UNIVERSITY OF TWENTE. 17



RESULTS - CLASSIFIED MAPS

Raw image Reference SVM SVM+GLCM CNN-5
Tile 1 ; N . _

Tile 2

Tile3

OA OVER COMBINED TILES

Informal Other &

from VHR Satellite Images using Convolutional Neural Networks, IGARSS 2017.

@ 6. N. Mboga, C. Persello, J.R. Bergado, A. Stein, “Detection of Informal Settlements
sxc  UNIVERSITY OF TWENTE.



DENSE POINT CLOUD FROM UAV IMAGES, KIGALI, RWANDA
(IMAGE BY C. GEVAERT)
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MULTIPLE KERNEL
LEARNING

Overall Accuracy:

Single-kernel SVM: 85.4%
Random forest: 86.5%
MKL: 90.6%

6. Gevaert, C.M.; Persello, C.; Sliuzas,
R.; Vosselman, G. Informal
settlement classification using
point-cloud and image-based
features from UAV data. ISPRS J.
Photogramm. Remote Sens.
2017, 125, 225-236.

Buildings
@) Walls

svc  UNIVERSITY OF TWENTE.
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CLASSIFICATION RESULTS EXTENDED STUDY AREA

area (Kigali, Rwanda)

» Extended study

Source: Gevaert



DETECTING SLUMS WITH BOVW FRAMEWORK (DYNASLUM)

1. Set Up Image Category Sets 2. Create Bag of Features
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Slum Accuracy: 88.124

=< UNIVERSITY OF TWENTE. 1. Ranguelova et al.. Image based classification of slums, built-up and non-
built-up areas in Kalyan, India. In EARSeL Symposium, Prague, 2017.



CHALLENGE 1:
UNDERSTANDING SLUMS/POVERTY NOT AS BINARY PROBLEM

= Mapping the diversity of deprived areas (multi-class approach): Kuffer,
Pfeffer, Sliuzas, Baud, van Maarseveen (2017)

TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5
Slum pocket * Slum area, small Slum area, mix small/larger | Basic formal and chawl | Formal areas (formal *)
buildings (slum small *)[  buildings (slum mix *) (basic/chawl *)

Geometry: Small roofs
Density: High

Pattern: Organic
Environment: Pockets along
roads or within formal areas

Geometry: Small roofs
Density: High

Pattern: Organic
Environment: Large areas
with diverse uses

iGeometry: Small-medium
roofs

Density: Mix

Pattern: Diverse
Environment: Some areas in
more elevated terrain
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Engstrom, R.; Newhouse, D.; Haldavanekar, V.; Copenhaver, A.; Hersh,

J. In Evaluating the relationship between spatial and spectral features

derived from high spatial resolution satellite data and urban poverty in
@, Colombo, Sri Lanka, JURSE, 6-8 March 2017.
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CHALLENGE 2:

CAN WE COMPUTE A GLOBAL SLUM MAP? .

= What are the most robust image features?

= How can we incorporate different slum development stages,
dynamics and typologies?

» Feature selection — training — assessment — which algorithms
and reference data?

= Towards global slum mapping - reference cases, e.g.
= Kemper, T. et al. Towards an automated monitoring of human settlements in
South Africa using high resolution SPOT satellite imagery, 2015.

= Dugque, J.C. et al.. Exploring the Potential of Machine Learning for Automati '
Slum ldentification from VHR Imagery. Remote Sensing 2017, 9, 895. by

= Graesser, J. et al. Image based characterization of formal and informal
neighborhoods in an urban landscape. IEEE J. Sel. Top. Appl. Earth Obs.
@ Remote Sens. 2012, 5, 1164-1176.

svc  UNIVERSITY OF TWENTE.




CHALLENGE 3:
INFORMATION NEEDS AND ETHIC CONSIDERATIONS

v o 5 4
Shall we make slum‘ maps and |mages pub||C_ y
avatlable 7?7?72 32U .

svc  UNIVERSITY OF TWENTE.

(image by C. Gevaert)



CHALLENGE 4:
UNDERSTAND BETTER ENVIRONMENTAL CONDITIONS OF SLUMS

The shape of locally high temperature

Scalefsize of locally high temperature through morphological analysis

through morphological analysis

Smaller informal urban settlement
with less intensive locally high
temperature

s
28,
~— :
O 5 :
& 2.
0"_) Larger informal urban settlement
3ol with more intensive locally high

temperature

WANG, J. et al. Characterizing the thermal patterns
of informal urban settlements. Forthcoming.
axc  UNIVERSITY OF TWENTE.
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